Propagation of chaos;
Navier Stokes;
mean field limits;
large deviation principle;
relative entropy;
CONVERGENCE;
FLOW;
D O I:
10.3934/krm.2022030
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We derive a quantitative propagation of chaos result for a mixed-sign point vortex system on T-2 with independent Brownian noise, at an optimal rate. We introduce a pairing between vortices of opposite sign, and using the vorticity formulation of 2D Navier-Stokes, we define an associated tensorized vorticity equation on T-2 x T-2 with the same well-posedness theory as the original equation. Solutions of the new PDE can be projected onto solutions of Navier-Stokes, and the tensorized equation allows us to exploit existing propagation of chaos theory for identical particles.
机构:
Univ Paris Est, LAMA UMR 8050, Fac Sci & Technol, F-94010 Creteil, FranceUniv Paris Est, LAMA UMR 8050, Fac Sci & Technol, F-94010 Creteil, France
Fournier, Nicolas
Hauray, Maxime
论文数: 0引用数: 0
h-index: 0
机构:
Univ Aix Marseille, CNRS, Cent Marseille, LATP,UMR 7353, F-13453 Marseille, FranceUniv Paris Est, LAMA UMR 8050, Fac Sci & Technol, F-94010 Creteil, France
Hauray, Maxime
Mischler, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 09, CEREMADE UMR 7534, F-75775 Paris 16, FranceUniv Paris Est, LAMA UMR 8050, Fac Sci & Technol, F-94010 Creteil, France