QUANTITATIVE PROPAGATION OF CHAOS FOR THE MIXED-SIGN VISCOUS VORTEX MODEL ON THE TORUS

被引:0
|
作者
Wynter, Dominic [1 ]
机构
[1] Univ Cambridge, Cambridge, England
关键词
  Propagation of chaos; Navier Stokes; mean field limits; large deviation principle; relative entropy; CONVERGENCE; FLOW;
D O I
10.3934/krm.2022030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a quantitative propagation of chaos result for a mixed-sign point vortex system on T-2 with independent Brownian noise, at an optimal rate. We introduce a pairing between vortices of opposite sign, and using the vorticity formulation of 2D Navier-Stokes, we define an associated tensorized vorticity equation on T-2 x T-2 with the same well-posedness theory as the original equation. Solutions of the new PDE can be projected onto solutions of Navier-Stokes, and the tensorized equation allows us to exploit existing propagation of chaos theory for identical particles.
引用
收藏
页码:294 / 310
页数:17
相关论文
共 3 条
  • [1] Propagation of chaos for the 2D viscous vortex model
    Fournier, Nicolas
    Hauray, Maxime
    Mischler, Stephane
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (07) : 1423 - 1466
  • [2] QUANTITATIVE PROPAGATION OF CHAOS IN A BIMOLECULAR CHEMICAL REACTION-DIFFUSION MODEL
    Lim, Tau Shean
    Lu, Yulong
    Nolen, James H.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 2098 - 2133
  • [3] A Quantitative Structure-Property Relationship Model Based on Chaos-Enhanced Accelerated Particle Swarm Optimization Algorithm and Back Propagation Artificial Neural Network
    Li, Mengshan
    Zhang, Huaijin
    Liu, Liang
    Chen, Bingsheng
    Guan, Lixin
    Wu, Yan
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (07):