Non-Markovian Stochastic Gross-Pitaevskii Equation for the Exciton-Polariton Bose-Einstein Condensate

被引:0
|
作者
Alliluev, Alexey D. [1 ]
Makarov, Denis V. [1 ]
Asriyan, Norayr A. [2 ,5 ]
Elistratov, Andrei A. [2 ]
Lozovik, Yurii E. [3 ,4 ]
机构
[1] Russian Acad Sci, V I Ilichev Pacific Oceanol Inst, Far Eastern Branch, Vladivostok 690041, Russia
[2] NL Dukhov Res Inst Automat VNIIA, Moscow 127030, Russia
[3] Inst Spect RAS, Troitsk 108840, Russia
[4] Natl Res Univ, Higher Sch Econ, MIEM, Moscow 101000, Russia
[5] Inst Microelect Technol RAS, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
Non-Markovian dynamics; Exciton-polaritons; Bose-Einstein condensation; Optical coherence;
D O I
10.1007/s10909-023-03027-4
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a non-Markovian version of the Gross-Pitaevskii equation is proposed to describe the condensate formation in an exciton-polariton system subject to incoherent pumping. By introducing spatially delta-correlated noise terms, we observe a transition from a spatially ordered phase to a disordered one with simultaneous density reduction as the temperature increases. Above the transition temperature, the uniform condensate breaks up into multiple irregularly located separate dense spots. Using the Gabor transform, we demonstrate condensate decoherence with increasing temperature, which is accompanied by the transition from narrow-band to broadband spectral density.
引用
收藏
页码:331 / 343
页数:13
相关论文
共 50 条
  • [1] Non-Markovian Stochastic Gross–Pitaevskii Equation for the Exciton–Polariton Bose–Einstein Condensate
    Alexey D. Alliluev
    Denis V. Makarov
    Norayr A. Asriyan
    Andrei A. Elistratov
    Yurii E. Lozovik
    Journal of Low Temperature Physics, 2024, 214 : 331 - 343
  • [2] Continuous quantum measurement of a Bose-Einstein condensate: A stochastic Gross-Pitaevskii equation
    Dalvit, Diego A.R.
    Dziarmaga, Jacek
    Onofrio, Roberto
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 65 (5 B): : 536041 - 536041
  • [3] Continuous quantum measurement of a Bose-Einstein condensate: A stochastic Gross-Pitaevskii equation
    Dalvit, DAR
    Dziarmaga, J
    Onofrio, R
    PHYSICAL REVIEW A, 2002, 65 (05): : 12
  • [4] Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 291 - 370
  • [5] Evolution of Bose-Einstein condensate systems beyond the Gross-Pitaevskii equation
    Lyanda-Geller, Yuli
    FRONTIERS IN PHYSICS, 2023, 11
  • [6] The Gross-Pitaevskii equation and Bose-Einstein condensates
    Rogel-Salazar, J.
    EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (02) : 247 - 257
  • [7] Ground state solutions of the complex Gross Pitaevskii equation associated to exciton-polariton Bose-Einstein condensates
    Hajaiej, Hichem
    Ibrahim, Slim
    Masmoudi, Nader
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 148 : 1 - 23
  • [8] Stochastic Gross-Pitaevskii Equation for the Dynamical Thermalization of Bose-Einstein Condensates
    Savenko, I. G.
    Liew, T. C. H.
    Shelykh, I. A.
    PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [9] Bloch oscillations of an exciton-polariton Bose-Einstein condensate
    Flayac, H.
    Solnyshkov, D. D.
    Malpuech, G.
    PHYSICAL REVIEW B, 2011, 83 (04)
  • [10] Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensate
    Drummond, P.D.
    Kheruntsyan, K.V.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (01): : 013605 - 013601