Uncertainty quantification of the convolutional neural networks on permeability estimation from micro-CT scanned sandstone and carbonate rock images

被引:1
|
作者
Liu, Siyan [1 ]
Fan, Ming [1 ]
Lu, Dan [1 ]
机构
[1] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA
来源
关键词
Uncertainty quantification; Machine learning; Convolutional neural networks; Permeability; Digital rock physics; MULTIPHASE FLOW;
D O I
10.1016/j.geoen.2023.212160
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Rock permeability is one of the most crucial properties affecting subsurface fluid flow behaviors. To accurately and robustly estimate the permeability, Digital Rock Physics, including micro-CT scanning technology and direct flow simulations on scanned images, has prevailed in recent years. Besides, machine learning techniques such as convolutional neural networks (CNNs) have been widely adopted and achieved success in permeability estimations directly from rock images. However, existing ML methods used for permeability estimation from rock images lack uncertainty quantification that causes unreliable predictions and overconfident estimations on out-of-distribution (OOD) samples. In this work, we propose a PI3NN-CNN framework to address this problem. PI3NN-CNN consists of a CNN model for absolute permeability estimation and a PI3NN method to quantify the estimation uncertainty. It is able to quantify the uncertainty for in-distribution (InD) data with a desired confidence level, and identify OOD samples to avoid overconfident predictions. We demonstrate the method using micro-CT scanned images from two sandstone and two carbonate rocks. We found that PI3NNCNN generates accurate predictions for InD samples, while producing high-quality prediction uncertainties regardless of the prediction accuracy. Meanwhile, PI3NN-CNN identifies OOD samples using its special network initialization scheme. The unique feature of PI3NN-CNN makes it applicable to more complex real-world image-based data for robust learning and predictions without overconfident estimations when the ground-truth information is unavailable.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Uncertainty quantification of the convolutional neural networks on permeability estimation from micro-CT scanned sandstone and carbonate rock images (vol 230, 212160, 2023)
    Liu, Siyan
    Fan, Ming
    Lu, Dan
    [J]. GEOENERGY SCIENCE AND ENGINEERING, 2024, 237
  • [2] Permeability estimation on raw micro-CT of carbonate rock samples using deep learning
    dos Anjos, Carlos Eduardo Menezes
    de Matos, Thais Fernandes
    Avila, Manuel Ramon Vargas
    Fernandes, Julio de Castro Vargas
    Surmas, Rodrigo
    Evsukoff, Alexandre Goncaalves
    [J]. GEOENERGY SCIENCE AND ENGINEERING, 2023, 222
  • [3] Voxel agglomeration for accelerated estimation of permeability from micro-CT images
    Chung, Traiwit
    Wang, Ying Da
    Armstrong, Ryan T.
    Mostaghimi, Peyman
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 184
  • [4] Deep learning for lithological classification of carbonate rock micro-CT images
    Carlos E. M. dos Anjos
    Manuel R. V. Avila
    Adna G. P. Vasconcelos
    Aurea M. Pereira Neta
    Lizianne C. Medeiros
    Alexandre G. Evsukoff
    Rodrigo Surmas
    Luiz Landau
    [J]. Computational Geosciences, 2021, 25 : 971 - 983
  • [5] Deep learning for lithological classification of carbonate rock micro-CT images
    dos Anjos, Carlos E. M.
    Avila, Manuel R. V.
    Vasconcelos, Adna G. P.
    Neta, Aurea M. Pereira
    Medeiros, Lizianne C.
    Evsukoff, Alexandre G.
    Surmas, Rodrigo
    Landau, Luiz
    [J]. COMPUTATIONAL GEOSCIENCES, 2021, 25 (03) : 971 - 983
  • [6] Processing of micro-CT images of granodiorite rock samples using convolutional neural networks (CNN). Part III: Enhancement of Scanco micro-CT images of granodiorite rocks using a 3D convolutional neural network super-resolution algorithm
    Roslin, A.
    Lebedev, M.
    Mitchell, T. R.
    Onederra, I. A.
    Leonardi, C. R.
    [J]. MINERALS ENGINEERING, 2023, 195
  • [7] Simulation of NMR response from micro-CT images using artificial neural networks
    Farzi, Reza
    Bolandi, Vahid
    Kadkhodaie, Ali
    Iglauer, Stefan
    Hashempour, Zeinolaabedin
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2017, 39 : 54 - 61
  • [8] High-Precision Tracking of Sandstone Deformation From Micro-CT Images
    Liang, Jiabin
    Lebedev, Maxim
    Gurevich, Boris
    Arns, Christoph Hermann
    Vialle, Stephanie
    Glubokovskikh, Stanislav
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (09)
  • [9] Automated Localization and Segmentation of Vertebrae in the Micro-CT Images of Rabbit Fetuses using 3D Convolutional Neural Networks
    Chen, Antong
    Gona, Saideep
    Xue, Dahai
    Shah, Tosha
    Gleason, Alexa
    Robinson, Barbara
    Mattson, Britta
    Hines, Catherine
    [J]. MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [10] Processing of micro-CT images of granodiorite rock samples using convolutional neural networks (CNN), Part II: Semantic segmentation using a 2.5D CNN
    Roslin, A.
    Marsh, M.
    Provencher, B.
    Mitchell, T. R.
    Onederra, I. A.
    Leonardi, C. R.
    [J]. MINERALS ENGINEERING, 2023, 195