Atrial Fibrillation Detection with Single-Lead Electrocardiogram Based on Temporal Convolutional Network-ResNet

被引:0
|
作者
Zhao, Xiangyu [1 ]
Zhou, Rong [1 ,2 ]
Ning, Li [1 ]
Guo, Qiuquan [1 ]
Liang, Yan [1 ,3 ]
Yang, Jun [1 ]
Dimitriadis, Stavros I.
Dragomir, Andrei
Omurtag, Ahmet
机构
[1] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, ShenSi Lab, Chengdu 518110, Peoples R China
[2] Natl Supercomp Ctr Shenzhen, Shenzhen 518005, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
atrial fibrillation; electrocardiogram; temporal convolutional network; residual network;
D O I
10.3390/s24020398
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Atrial fibrillation, one of the most common persistent cardiac arrhythmias globally, is known for its rapid and irregular atrial rhythms. This study integrates the temporal convolutional network (TCN) and residual network (ResNet) frameworks to effectively classify atrial fibrillation in single-lead ECGs, thereby enhancing the application of neural networks in this field. Our model demonstrated significant success in detecting atrial fibrillation, with experimental results showing an accuracy rate of 97% and an F1 score of 87%. These figures indicate the model's exceptional performance in identifying both majority and minority classes, reflecting its balanced and accurate classification capability. This research offers new perspectives and tools for diagnosis and treatment in cardiology, grounded in advanced neural network technology.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Accuracy of a smartwatch based single-lead electrocardiogram device in detection of atrial fibrillation
    Rajakariar, Kevin
    Koshy, Anoop N.
    Sajeev, Jithin K.
    Nair, Sachin
    Roberts, Louise
    Teh, Andrew W.
    [J]. HEART, 2020, 106 (09) : 665 - 670
  • [2] Dual temporal convolutional network for single-lead fibrillation waveform extraction
    Lu, Jun
    Luo, Jie
    Xie, Zhuoyan
    Xie, Kan
    Cheng, Yuanxiong
    Xie, Shengli
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22): : 15281 - 15292
  • [3] Dual temporal convolutional network for single-lead fibrillation waveform extraction
    Jun Lu
    Jie Luo
    Zhuoyan Xie
    Kan Xie
    Yuanxiong Cheng
    Shengli Xie
    [J]. Neural Computing and Applications, 2021, 33 : 15281 - 15292
  • [4] Accuracy of a smartwatch based single-lead electrocardiogram device in screening for atrial fibrillation
    Rajakariar, K.
    Koshy, A. N.
    Sajeev, J. K.
    Nair, S.
    Roberts, L.
    Teh, A. W.
    [J]. EUROPEAN HEART JOURNAL, 2019, 40 : 185 - 185
  • [5] Light Weight Residual Convolutional Neural Network for Atrial Fibrillation Detection in Single-lead ECG Recordings
    Ouni, Ridha
    Alhichri, Haikel
    Kharshid, Areej
    [J]. ENGINEERING JOURNAL-THAILAND, 2024, 28 (02): : 67 - 80
  • [6] Mobile Single-Lead Electrocardiogram Technology for Atrial Fibrillation Detection in Acute Ischemic Stroke Patients
    Lenska-Mieciek, Marta
    Kuls-Oszmaniec, Aleksandra
    Dociak, Natalia
    Kowalewski, Marcin
    Sarwinski, Krzysztof
    Osiecki, Andrzej
    Fiszer, Urszula
    [J]. JOURNAL OF CLINICAL MEDICINE, 2022, 11 (03)
  • [7] An Effective Atrial Fibrillation Detection from Short Single-Lead Electrocardiogram Recordings Using MCNN-BLSTM Network
    Zhang, Hongpo
    Gu, Hongzhuang
    Gao, Junli
    Lu, Peng
    Chen, Guanhe
    Wang, Zongmin
    [J]. ALGORITHMS, 2022, 15 (12)
  • [8] A novel single-lead handheld atrial fibrillation detection system
    Li, Ying
    Li, Jianqing
    Yang, Chenxi
    Xing, Yantao
    Liu, Chengyu
    [J]. PHYSIOLOGICAL MEASUREMENT, 2021, 42 (11)
  • [9] Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings
    Rubin, Jonathan
    Parvaneh, Saman
    Rahman, Asif
    Conroy, Bryan
    Babaeizadeh, Saeed
    [J]. JOURNAL OF ELECTROCARDIOLOGY, 2018, 51 (06) : S18 - S21
  • [10] Accuracy and clinical relevance of the single-lead Apple Watch electrocardiogram to identify atrial fibrillation
    Pepplinkhuizen, Shari
    Hoeksema, Wiert F.
    van der Stuijt, Willeke
    van Steijn, Nicole J.
    Winter, Michiel M.
    Wilde, Arthur A. M.
    Smeding, Lonneke
    Knops, Reinoud E.
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2022, 3 (06): : S17 - S22