Application of Physics-Informed Neural Networks for forward and inverse analysis of pile-soil interaction

被引:18
|
作者
Vahab, M. [1 ]
Shahbodagh, B. [1 ]
Haghighat, E. [2 ]
Khalili, N. [1 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, Sydney 2052, Australia
[2] MIT, Cambridge, MA USA
关键词
Physics-Informed Neural Networks (PINNs); Deep learning; Pile-soil interaction; SciANN; MODEL; STIFFNESS;
D O I
10.1016/j.ijsolstr.2023.112319
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The application of the Physics-Informed Neural Networks (PINNs) to forward and inverse analysis of pile-soil interaction problems is presented. The main challenge encountered in the Artificial Neural Network (ANN) modeling of pile-soil interaction is the presence of abrupt changes in material properties, which results in large discontinuities in the gradient of the displacement solution. Therefore, a domain-decomposition multi-network model is proposed to deal with the discontinuities in the strain fields at common boundaries of pile-soil regions and soil layers. The application of the model to the analysis and parametric study of single piles embedded in both homogeneous and layered formations is demonstrated under axisymmetric and plane strain conditions. The performance of the model in parameter identification (inverse analysis) of pile-soil interaction is particularly investigated. It is shown that by using PINNs, the localized data acquired along the pile length -possibly obtained via fiber optic strain sensing-can be successfully used for the inversion of soil parameters in layered formations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Physics-informed and graph neural networks for enhanced inverse analysis
    Di Lorenzo, Daniele
    Champaney, Victor
    Ghnatios, Chady
    Cueto, Elias
    Chinesta, Francisco
    ENGINEERING COMPUTATIONS, 2024,
  • [2] Gradient-enhanced physics-informed neural networks for forward and inverse PDE
    Yu, Jeremy
    Lu, Lu
    Meng, Xuhui
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 393
  • [3] Deep fuzzy physics-informed neural networks for forward and inverse PDE problems
    Wu, Wenyuan
    Duan, Siyuan
    Sun, Yuan
    Yu, Yang
    Liu, Dong
    Peng, Dezhong
    NEURAL NETWORKS, 2025, 181
  • [4] Solving forward and inverse problems of contact mechanics using physics-informed neural networks
    Sahin, Tarik
    von Danwitz, Max
    Popp, Alexander
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2024, 11 (01)
  • [5] Auxiliary physics-informed neural networks for forward, inverse, and coupled radiative transfer problems
    Riganti, R.
    Negro, L. Dal
    APPLIED PHYSICS LETTERS, 2023, 123 (17)
  • [6] Research on forward and inverse problems of structure based on physics-informed graph neural networks
    Zheng, Zhe
    Jiang, Wen-qiang
    Wang, Zhang-qi
    Xiao, Zi-ting
    Guo, Yu-cheng
    STRUCTURES, 2025, 74
  • [7] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [8] Physics-Informed Neural Networks for Solving Forward and Inverse Problems in Complex Beam Systems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 5981 - 5995
  • [9] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [10] Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow
    Depina, Ivan
    Jain, Saket
    Valsson, Sigurdur Mar
    Gotovac, Hrvoje
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2022, 16 (01) : 21 - 36