Grouping fuzzy granular structures based on k-means and fuzzy c-means clustering algorithms in information granulation

被引:0
|
作者
Ren, J. [1 ]
Zhu, P. [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Math & Informat Networks, Minist Educ, Beijing 100876, Peoples R China
来源
IRANIAN JOURNAL OF FUZZY SYSTEMS | 2023年 / 20卷 / 05期
基金
中国国家自然科学基金;
关键词
Fuzzy granular structure; distance measure; k-means clustering; fuzzy c-means clustering; granular com-puting; fuzzy relation; KNOWLEDGE GRANULATION; ROUGH ENTROPY;
D O I
10.22111/IJFS.2023.7689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fuzzy information granulation theory is based on the way humans granulate and reason about information, and it is essential to the remarkable ability of people to act logically in ambiguous and uncertain situations. In the study of fuzzy information granulation, instead of discussing single fuzzy granules, it is common to consider a fuzzy granular structure arising from a set of fuzzy information granules. Different approaches and perspectives may generate different fuzzy granular structures in the same universe by dividing the object into a number of meaningful fuzzy information granules. However, a specific task usually requires only a selection of representative fuzzy granular structures. Therefore, the main aim of this paper is to group fuzzy granular structures efficiently and accurately. To this end, we first introduce the distances between two fuzzy granular structures and illustrate the relevant properties. Subsequently, k-means and fuzzy c-means clustering algorithms are designed for clustering fuzzy granular structures, and their convergence is demonstrated. In this way, similar fuzzy granular structures can be grouped into the same class. In addition, two evaluation indicators, dispersion and separation, are constructed to evaluate the effect of clustering fuzzy granular structures. Experiments on 12 publicly available datasets demonstrate the feasibility and effectiveness of the proposed algorithms.
引用
收藏
页码:9 / 31
页数:23
相关论文
共 50 条
  • [1] A Comparative Study of K-Means, K-Means plus plus and Fuzzy C-Means Clustering Algorithms
    Kapoor, Akanksha
    Singhal, Abhishek
    [J]. 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2017,
  • [2] Empirical Evaluation of K-Means, Bisecting K-Means, Fuzzy C-Means and Genetic K-Means Clustering Algorithms
    Banerjee, Shreya
    Choudhary, Ankit
    Pal, Somnath
    [J]. 2015 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE), 2015, : 172 - 176
  • [3] k-means and fuzzy c-means fusion for object clustering
    Heni, Ashraf
    Jdey, Imen
    Ltifi, Hela
    [J]. 2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 177 - 182
  • [4] Comparative Analysis of K-Means and Fuzzy C-Means Algorithms
    Ghosh, Soumi
    Dubey, Sanjay Kumar
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2013, 4 (04) : 35 - 39
  • [5] Clustering Aluminum Smelting Potlines Using Fuzzy C-Means and K-Means Algorithms
    de Lima, Flavia A. N.
    de Souza, Alan M. F.
    Soares, Fabio M.
    Cardoso, Diego Lisboa
    de Oliveira, Roberto C. L.
    [J]. LIGHT METALS 2017, 2017, : 589 - 597
  • [6] COMPARISON OF CLUSTERING IN TUBERCULOSIS USING FUZZY C-MEANS AND K-MEANS METHODS
    Rochman, Eka Mala Sari
    Miswanto
    Suprajitno, Herry
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [7] Modeling of Vehicle Trajectory using K-Means and Fuzzy C-Means Clustering
    Choong, Mei Yeen
    Angeline, Lorita
    Chin, Renee Ka Yin
    Yeo, Kiam Beng
    Teo, Kenneth Tze Kin
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN ENGINEERING AND TECHNOLOGY (IICAIET), 2018, : 1 - 6
  • [8] The Cascaded Moving k-Means and Fuzzy c-Means Clustering Algorithms for Unsupervised Segmentation of Malaria Images
    Abdul-Nasir, Aimi Salihah
    Mashor, Mohd Yusoff
    Abd Halim, Nurul Hazwani
    Mohamed, Zeehaida
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [9] Evaluation of Segmentation in Magnetic Resonance Images Using k-Means and Fuzzy c-Means Clustering Algorithms
    Finkst, Tomaz
    [J]. ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2012, 79 (03): : 129 - 134
  • [10] Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms
    Jalali Zakaria
    [J]. International Journal of Mining Science and Technology, 2016, 26 (06) : 959 - 966