Ceramicized NASICON-based solid-state electrolytes for lithium metal batteries

被引:1
|
作者
Tsai, Yung-Chun [1 ]
Ku, Meng-Chiao [1 ]
Hsieh, Chien-Te [1 ,2 ]
Sung, Po-Yu [1 ]
Chen, Pin-Shuan [1 ]
Mohanty, Debabrata [1 ]
Gandomi, Yasser Ashraf [3 ]
Hung, I-Ming [1 ,4 ]
Patra, Jagabandhu [5 ]
Chang, Jeng-Kuei [5 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
[2] Univ Tennessee, Dept Mech, Biomed Engn, Knoxville, TN 37996 USA
[3] MIT, Dept Chem Engn, Cambridge, MA 02142 USA
[4] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 70101, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
关键词
Solid state electrolytes; Lithium metal batteries; NASICON-type powders; LATP powders; Activation energy; LI-ION; GLASS-CERAMICS; TRANSPORT-PROPERTIES; CONDUCTIVITY; PERFORMANCE; CONDUCTORS; EFFICIENCY; LATP; NMR;
D O I
10.1007/s10008-023-05729-x
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we have developed ceramicized hybrid solid state electrolytes (SSEs), which consisted of poly (vinylidene fluoride-hexafluoro propylene) (PVDF-HFP), lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) salt, and sodium superionic conductor (NASICON)-type Li1+xAlxTi2-x(PO4)(3) (LATP) powders for lithium-ion batteries (LIBs) utilizing lithium metal anode. Adopting the sol-gel synthesis technique followed by a thermal calcination at 850 degrees C, we synthesized round-like LATP powders with an average particle size of similar to 30 mu m. Engineering the LATP content (similar to 45 wt.%) within the hybrid SSEs, we were able to achieve thermal stability along with superior ionic conductivity (i.e., 1.40 x 10(-4) S cm(-1) at 30 degrees C). Employing the Arrhenius plot in the temperature range of 30-70 degrees C, the activation energy for the ionic conduction was lowered significantly (i.e., 0.21 eV) compared to prior efforts reported in the literature (i.e., 0.27 - 0.35 eV). The application of highly optimized SSE within a LIB with lithium metal anode resulted in the maximal capacity of similar to 162 mAh g(-1) at 0.1 C. The cyclic performance of the battery utilizing such an optimized SSE configuration was very robust with a highly stable coulombic efficiency (similar to 96.7%) after 100 cycles. Indeed, the ceramicized LATP-based SSEs developed in this work, can be employed for boosting the ionic conductivity, specific capacity, and cycle life while mitigating the interfacial resistance of the electrolyte/electrode layer for LIBs with lithium metal anode.
引用
收藏
页码:2047 / 2057
页数:11
相关论文
共 50 条
  • [1] Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes
    Zhang, Qiangqiang
    Lu, Yaxiang
    Guo, Weichang
    Shao, Yuanjun
    Liu, Lilu
    Lu, Jiaze
    Rong, Xiaohui
    Han, Xiaogang
    Li, Hong
    Chen, Liquan
    Hu, Yong-Sheng
    [J]. ENERGY MATERIAL ADVANCES, 2021, 2021 (2021):
  • [2] High-pressure low-temperature densification of NASICON-based LATP electrolytes for solid-state lithium batteries
    Valiyaveettil-SobhanRaj, Sona
    Gluchowski, Pawel
    Lopez-Aranguren, Pedro
    Aguesse, Frederic
    Sampathkumar, Ramakumar
    Thompson, Travis
    Rojviriya, Catleya
    Manalastas Jr, William
    Srinivasan, Madhavi
    Casas-Cabanas, Montse
    [J]. MATERIALIA, 2024, 33
  • [3] Interface issues and challenges for NASICON-based solid-state sodium-metal batteries
    Xiang, Le
    Li, Xiutao
    Xiao, Jin
    Zhu, Lingyun
    Zhan, Xiaowen
    [J]. ADVANCED POWDER MATERIALS, 2024, 3 (03):
  • [4] How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries
    Cortes, Francisco Javier Quintero
    Lewis, John A.
    Tippens, Jared
    Marchese, Thomas S.
    McDowell, Matthew T.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (05)
  • [5] Enabling High-Performance NASICON-Based Solid-State Lithium Metal Batteries Towards Practical Conditions
    Paolella, Andrea
    Liu, Xiang
    Daali, Amine
    Xu, Wenqian
    Hwang, Inhui
    Savoie, Sylvio
    Girard, Gabriel
    Nita, Alina Gheorghe
    Perea, Alexis
    Demers, Hendrix
    Zhu, Wen
    Guerfi, Abdelbast
    Vijh, Ashok
    Bertoni, Giovanni
    Gazzadi, Gian Carlo
    Berti, Giulia
    Sun, Chengjun
    Ren, Yang
    Zaghib, Karim
    Armand, Michel
    Kim, Chisu
    Xu, Gui-Liang
    Amine, Khalil
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (30)
  • [6] How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries
    Cortes, F. J. Q.
    Lewis, J. A.
    Tippens, J.
    [J]. ELECTROCHEMICAL SOCIETY INTERFACE, 2020, 29 (03): : 41 - 41
  • [7] Perovskite Solid-State Electrolytes for Lithium Metal Batteries
    Yan, Shuo
    Yim, Chae-Ho
    Pankov, Vladimir
    Bauer, Mackenzie
    Baranova, Elena
    Weck, Arnaud
    Merati, Ali
    Abu-Lebdeh, Yaser
    [J]. BATTERIES-BASEL, 2021, 7 (04):
  • [8] Active Control of Interface Dynamics in NASICON-Based Rechargeable Solid-State Sodium Batteries
    Sun, Zheng
    Li, Lei
    Sun, Chen
    Ni, Qing
    Zhao, Yongjie
    Wu, Hui
    Jin, Haibo
    [J]. NANO LETTERS, 2022, 22 (17) : 7187 - 7194
  • [9] Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries
    Stenina, Irina
    Novikova, Svetlana
    Voropaeva, Daria
    Yaroslavtsev, Andrey
    [J]. BATTERIES-BASEL, 2023, 9 (08):
  • [10] A reflection on polymer electrolytes for solid-state lithium metal batteries
    Song, Ziyu
    Chen, Fangfang
    Martinez-Ibanez, Maria
    Feng, Wenfang
    Forsyth, Maria
    Zhou, Zhibin
    Armand, Michel
    Zhang, Heng
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)