Tangent complexes and the Diamond Lemma

被引:0
|
作者
Dotsenko, Vladimir [1 ,2 ]
Tamaroff, Pedro [3 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 rue Rene Descartes, F-67000 Strasbourg, France
[3] Johann von Neumann Haus Humboldt Univ Berlin, Inst Math, Rudower Chaussee 25, D-12489 Berlin, Germany
基金
爱尔兰科学基金会;
关键词
Deformation theory; Diamond Lemma; Grobner basis; multiplicative free resolution; rewriting system; tangent complex; GROBNER-SHIRSHOV BASES; PERTURBATION-THEORY; POLYGRAPHIC RESOLUTIONS; PROJECTIVE-RESOLUTIONS; FINITENESS CONDITION; HOMOLOGICAL ALGEBRA; MINIMAL MODELS; OPERADS; RING;
D O I
10.1142/S1664360723500133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The celebrated Diamond Lemma of Bergman gives an effectively verifiable criterion of uniqueness of normal forms for term rewriting in associative algebras. We revisit that result in the context of deformation theory and homotopical algebra; this leads to a new proof using multiplicative free resolutions. Specifically, our main result states that every such resolution of an algebra with monomial relations gives rise to its own Diamond Lemma, where Bergman's condition of "resolvable ambiguities" is precisely the first nontrivial component of the Maurer-Cartan equation in the corresponding tangent complex. The same approach works for many other algebraic structures, emphasizing the relevance of computing resolutions of algebras with monomial relations.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] DIAMOND LEMMA FOR RING THEORY
    BERGMAN, GM
    ADVANCES IN MATHEMATICS, 1978, 29 (02) : 178 - 218
  • [2] Composition-diamond lemma for modules
    Yuqun Chen
    Yongshan Chen
    Chanyan Zhong
    Czechoslovak Mathematical Journal, 2010, 60 : 59 - 76
  • [3] Composition-diamond lemma for modules
    Chen, Yuqun
    Chen, Yongshan
    Zhong, Chanyan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (01) : 59 - 76
  • [4] A DIAMOND LEMMA FOR HECKE-TYPE ALGEBRAS
    Elias, Ben
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (03) : 1883 - 1915
  • [5] A New Composition-Diamond Lemma for Dialgebras
    Zhang, Guangliang
    Chen, Yuqun
    ALGEBRA COLLOQUIUM, 2017, 24 (02) : 323 - 350
  • [6] The Diamond Lemma and the PBW Property in Quantum Algebras
    Havlicek, M.
    Posta, S.
    ACTA POLYTECHNICA, 2010, 50 (05) : 40 - 45
  • [7] COMPOSITION-DIAMOND LEMMA FOR DIFFERENTIAL ALGEBRAS
    Chen, Yuqun
    Chen, Yongshan
    Li, Yu
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2009, 34 (2A) : 135 - 145
  • [8] TORUS EMBEDDINGS AND TANGENT COMPLEXES
    ISHIDA, MN
    ODA, T
    TOHOKU MATHEMATICAL JOURNAL, 1981, 33 (03) : 337 - 381
  • [9] Diamond lemma for the group graded quasi-algebras
    Balodi, Mamta
    Huang, Hua-Lin
    Kumar, Shiv Datt
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (03): : 341 - 352
  • [10] Composition-Diamond Lemma for associative conformal algebras
    Bokut, LA
    Fong, Y
    Ke, WF
    JOURNAL OF ALGEBRA, 2004, 272 (02) : 739 - 774