Local conductor bounds for modular abelian varieties

被引:0
|
作者
Martin, Kimball [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
日本学术振兴会;
关键词
abelian varieties of GL(2)-type; endomorphism algebras; conduc-; tors; rationality fields of modular forms;
D O I
10.4064/aa230228-6-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Brumer and Kramer gave bounds on local conductor exponents for an abelian variety A/Q in terms of the dimension of A and the localization prime p. Here we give improved bounds in the case that A has maximal real multiplication, i.e., A is isogenous to a factor of the Jacobian of a modular curve X0(N). In many cases, these bounds are sharp. The proof relies on showing that the rationality field of a newform for Gamma 0(N), and thus the endomorphism algebra of A, contains Q(zeta pr )+ when p divides N to a sufficiently high power. We also deduce that certain divisibility conditions on N determine the endomorphism algebra when A is simple.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 50 条
  • [1] LOCAL CONDUCTOR BOUNDS FOR MODULAR ABELIAN VARIETIES
    Martin, Kimball
    arXiv, 2023,
  • [2] Local bounds for torsion points on abelian varieties
    Clark, Pete L.
    Xarles, Xavier
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (03): : 532 - 555
  • [3] Bounds for curves in abelian varieties
    Noguchi, J
    Winkelmann, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 572 : 27 - 47
  • [4] A MODULAR FAMILY OF ABELIAN VARIETIES
    GILLARD, R
    LECTURE NOTES IN MATHEMATICS, 1989, 1380 : 75 - 86
  • [5] PARAMODULAR ABELIAN VARIETIES OF ODD CONDUCTOR
    Brumer, Armand
    Kramer, Kenneth
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) : 2463 - 2516
  • [6] Modular abelian varieties of odd modular degree
    Yazdani, Soroosh
    ALGEBRA & NUMBER THEORY, 2011, 5 (01) : 37 - 62
  • [7] Powers of 2 in modular degrees of modular abelian varieties
    Dummigan, Neil
    Krishnamoorthy, Srilakshmi
    JOURNAL OF NUMBER THEORY, 2013, 133 (02) : 501 - 522
  • [8] Computing modular correspondences for abelian varieties
    Faugere, Jean-Charles
    Lubicz, David
    Robert, Damien
    JOURNAL OF ALGEBRA, 2011, 343 (01) : 248 - 277
  • [9] LOCAL MODULI OF ABELIAN VARIETIES
    CRICK, SE
    AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (03) : 851 - 861
  • [10] LOWER BOUNDS OF HEIGHTS ON ABELIAN-VARIETIES
    DAVID, S
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1993, 121 (04): : 509 - 544