Normalized deep learning algorithms based information aggregation functions to classify motor imagery EEG signal

被引:1
|
作者
Al-Hamadani, Ammar A. [1 ]
Mohammed, Mamoun J. [1 ]
Tariq, Suphian M. [1 ]
机构
[1] Al Iraqia Univ, Coll Engn, Dept Comp Engn, Baghdad, Iraq
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 30期
关键词
Brain-Computer Interface (BCI); Motor Imagery (MI); Deep learning; Convolutional Neural Network (CNN); Long short-term memory (LSTM); Recurrent Convolutional Neural Network (R-CNN); EMOTIV EPOC; Data aggregation; COMMON SPATIAL-PATTERN; CLASSIFICATION; NETWORKS;
D O I
10.1007/s00521-023-08944-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, the discipline of Brain-Computer-Interface (BCI) has attracted attention to exploiting Electroencephalograph (EEG) mental activities such as Motor Imagery (MI). Neurons in the human brain are activated during these MI tasks and generate an electrical potential of small magnitude reached to the scalp as a signal. Classification of MI data is a primary problem in BCI systems. Classification accuracy of these biomedical signals emerges as a significant task in the scientific community. This work proposes two main ideas: a new preprocessing technique based on four EEG frequency bands and a new stacking method for three deep-learning architectures used to decode three classes of MI signals. The preprocessing stage was introduced using Fast Fourier Transform to perform frequency analysis and data aggregation functions to enhance the data view. Performance was evaluated using well-defined metrics: accuracy, precision, recall, and f1-score for multiple batch sizes, optimizers, and epochs. Experimental results were evaluated using a publicly available dataset (BCI Competition IV dataset 2a) and local data collected from four subjects using the EMOTIV EPOC headset. The highest f1-scores achieved with the R-CNN model were 94% and 84% using the aforementioned datasets. Our proposed models also outperform many related models studied in the literature.
引用
收藏
页码:22725 / 22736
页数:12
相关论文
共 50 条
  • [1] Normalized deep learning algorithms based information aggregation functions to classify motor imagery EEG signal
    Ammar A. Al-Hamadani
    Mamoun J. Mohammed
    Suphian M. Tariq
    Neural Computing and Applications, 2023, 35 : 22725 - 22736
  • [2] Motor Imagery EEG Signal Classification based on Deep Transfer Learning
    Wei, Mingnan
    Yang, Rui
    Huang, Mengjie
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 85 - 90
  • [3] Deep learning in motor imagery EEG signal decoding: A Systematic Review
    Saibene, Aurora
    Ghaemi, Hafez
    Dagdevir, Eda
    NEUROCOMPUTING, 2024, 610
  • [4] A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals
    Khademi, Zahra
    Ebrahimi, Farideh
    Kordy, Hussain Montazery
    Computers in Biology and Medicine, 2022, 143
  • [5] A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals
    Khademi, Zahra
    Ebrahimi, Farideh
    Kordy, Hussain Montazery
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
  • [6] EEG motor/imagery signal classification comparative using machine learning algorithms
    Guadalupe Lazcano-Herrera, Alicia
    Fuentes-Aguilar, Rita Q.
    Alfaro-Ponce, Mariel
    2021 18TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2021), 2021,
  • [7] Time-frequency Based EEG Motor Imagery Signal Classification with Deep Learning Networks
    Rabby, Md Khurram Monir
    Eshun, Robert B.
    Belkasim, Saeid
    Islam, A. K. M. Kamrul
    2021 IEEE FOURTH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2021), 2021, : 133 - 134
  • [8] Recognition of EEG Signal Motor Imagery Intention Based on Deep Multi-View Feature Learning
    Xu, Jiacan
    Zheng, Hao
    Wang, Jianhui
    Li, Donglin
    Fang, Xiaoke
    SENSORS, 2020, 20 (12) : 1 - 16
  • [9] A novel motor imagery EEG recognition method based on deep learning
    Li, Ming-ai
    Zhang, Meng
    Sun, Yan-jun
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION, 2016, 47 : 728 - 733
  • [10] A Deep Learning Method for Classification of EEG Data Based on Motor Imagery
    An, Xiu
    Kuang, Deping
    Guo, Xiaojiao
    Zhao, Yilu
    He, Lianghua
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 203 - 210