Stability from graph symmetrisation arguments with applications to inducibility

被引:1
|
作者
Liu, Hong [1 ]
Pikhurko, Oleg [2 ]
Sharifzadeh, Maryam [3 ]
Staden, Katherine [4 ,5 ]
机构
[1] Inst Basic Sci IBS, Extremal Combinator & Probabil Grp ECOPRO, Daejeon, South Korea
[2] Univ Warwick, Math Inst & DIMAP, Coventry, England
[3] Umea Univ, Dept Math & Math Stat, Umea, Sweden
[4] Open Univ, Sch Math & Stat, Milton Keynes, England
[5] Open Univ, Sch Math & Stat, Milton Keynes MK7 6AA, England
基金
英国工程与自然科学研究理事会; 英国科研创新办公室; 欧洲研究理事会;
关键词
MAXIMAL NUMBER; BLOW-UP; DENSITY; PROOF;
D O I
10.1112/jlms.12777
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a sufficient condition for the stability property of extremal graph problems that can be solved via Zykov's symmetrisation. Our criterion is stated in terms of an analytic limit version of the problem. We show that, for example, it applies to the inducibility problem for an arbitrary complete bipartite graph B$B$, which asks for the maximum number of induced copies of B$B$ in an n$n$-vertex graph, and to the inducibility problem for K2,1,1,1$K_{2,1,1,1}$ and K3,1,1$K_{3,1,1}$, the only complete partite graphs on at most five vertices for which the problem was previously open.
引用
收藏
页码:1121 / 1162
页数:42
相关论文
共 50 条