Machine learning toward high-performance electrochemical sensors

被引:24
|
作者
Giordano, Gabriela F. [1 ]
Ferreira, Larissa F. [1 ,2 ]
Bezerra, italo R. S. [1 ,3 ]
Barbosa, Julia A. [1 ,4 ]
Costa, Juliana N. Y. [1 ,3 ]
Pimentel, Gabriel J. C. [1 ,5 ]
Lima, Renato S. [1 ,2 ,3 ,4 ]
机构
[1] Brazilian Nanotechnol Natl Lab, Brazilian Ctr Res Energy & Mat, BR-13083100 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil
[3] Fed Univ ABC, Ctr Nat & Human Sci, BR-09210580 Santo Andre, SP, Brazil
[4] Univ Sao Paulo, Sao Carlos Inst Chem, BR-13566590 Sao Carlos, SP, Brazil
[5] Sao Paulo State Univ, Sch Sci, BR-17033360 Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Artificial intelligence; Data treatment; Classification; Regression; Accuracy;
D O I
10.1007/s00216-023-04514-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The so-coined fourth paradigm in science has reached the sensing area, with the use of machine learning (ML) toward data-driven improvements in sensitivity, reproducibility, and accuracy, along with the determination of multiple targets from a single measurement using multi-output regression models. Particularly, the use of supervised ML models trained on large data sets produced by electrical and electrochemical bio/sensors has emerged as an impacting trend in the literature by allowing accurate analyses even in the presence of usual issues such as electrode fouling, poor signal-to-noise ratio, chemical interferences, and matrix effects. In this trend article, apart from an outlook for the coming years, we present examples from the literature that demonstrate how helpful ML algorithms can be for dispensing the adoption of experimental methods to address the aforesaid interfering issues, ultimately contributing to translate testing technologies into on-site, practical, and daily applications.
引用
收藏
页码:3683 / 3692
页数:10
相关论文
共 50 条
  • [1] Machine learning toward high-performance electrochemical sensors
    Gabriela F. Giordano
    Larissa F. Ferreira
    Ítalo R. S. Bezerra
    Júlia A. Barbosa
    Juliana N. Y. Costa
    Gabriel J. C. Pimentel
    Renato S. Lima
    [J]. Analytical and Bioanalytical Chemistry, 2023, 415 : 3683 - 3692
  • [2] Toward High-Performance Map-Recovery of Air Pollution Using Machine Learning
    Song, Jun
    Fan, Hongwei
    Gao, Meng
    Xu, Yibo
    Ran, Maohao
    Liu, Xiaoran
    Guo, Yike
    [J]. ACS ES&T ENGINEERING, 2022, 3 (01): : 73 - 85
  • [3] SparCML: High-Performance Sparse Communication for Machine Learning
    Renggli, Cedric
    Ashkboos, Saleh
    Aghagolzadeh, Mehdi
    Alistarh, Dan
    Hoefler, Torsten
    [J]. PROCEEDINGS OF SC19: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2019,
  • [4] Machine learning for high-performance solar radiation prediction
    Tanoli, Irfan Khan
    Mehdi, Asqar
    Algarni, Abeer D.
    Fazal, Azra
    Khan, Talha Ahmed
    Ahmad, Sadique
    Ateya, Abdelhamied A.
    [J]. Energy Reports, 2024, 12 : 4794 - 4804
  • [5] Network Support for High-Performance Distributed Machine Learning
    Malandrino, Francesco
    Chiasserini, Carla Fabiana
    Molner, Nuria
    de la Oliva, Antonio
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2023, 31 (01) : 264 - 278
  • [6] A natural fibre based sustainable and high-performance platform for electrochemical sensors
    Gokhale, Nachiket Aashish
    Vusa, Chiranjeevi Srinivasa Rao
    Panda, Siddhartha
    [J]. RSC SUSTAINABILITY, 2024, 2 (06): : 1849 - 1858
  • [7] Learning Everywhere: Pervasive Machine Learning for Effective High-Performance Computation
    Fox, Geoffrey
    Glazier, James A.
    Kadupitiya, J. C. S.
    Jadhao, Vikram
    Kim, Minje
    Qiu, Judy
    Sluka, James P.
    Somogyi, Endre
    Marathe, Madhav
    Adiga, Abhijin
    Chen, Jiangzhuo
    Beckstein, Oliver
    Jha, Shantenu
    [J]. 2019 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2019, : 422 - 429
  • [8] High-performance magnetoresistive sensors
    Hauser, H
    Stangl, G
    Hochreiter, J
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2000, 81 (1-3) : 27 - 31
  • [9] High-Performance Concrete Strength Prediction Based on Machine Learning
    Liu, Yanning
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [10] A CIRCULAR VIBRATING ELECTRODE WITH ENHANCED MASS TRANSFER FOR HIGH-PERFORMANCE ELECTROCHEMICAL SENSORS
    Zhang, Tianyi
    Zhou, Peng
    Simon, Terrence
    Cui, Tianhong
    [J]. 2021 34TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2021), 2021, : 779 - 782