On a Vernam cipher scheme based on elliptic curve L-functions

被引:1
|
作者
Omar, Sami [1 ]
Eid, Abdulla [1 ]
机构
[1] Univ Bahrain, Dept Math, POB 32038, Sukhair, Bahrain
关键词
Elliptic curves; L-functions; LCGs; Vernam cipher;
D O I
10.47974/JDMSC-1638
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a new Vernam-like cryptosystem based on the L-functions attached to elliptic curves. Actually, we show that for infinitely many elliptic curves, the coefficients of the L-series can be considered as a secure cryptographic cipher key when combined with linear and classical pseudo-random number generators. Hence, fast and widely known classical generators, like linear congruential generators, should be reintroduced into our list of cryptographic design choices.
引用
收藏
页码:151 / 174
页数:24
相关论文
共 50 条
  • [1] Symmetric powers of elliptic curve L-functions
    Martin, Phil
    Watkins, Mark
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2006, 4076 : 377 - 392
  • [2] The distribution of central values of elliptic curve L-functions
    Hinkel, Dustin
    Young, Matthew P.
    JOURNAL OF NUMBER THEORY, 2015, 156 : 15 - 20
  • [3] An elliptic curve test of the L-Functions Ratios Conjecture
    Huynh, Duc Khiem
    Miller, Steven J.
    Morrison, Ralph
    JOURNAL OF NUMBER THEORY, 2011, 131 (06) : 1117 - 1147
  • [4] Mahler measure and elliptic curve L-functions at s=3
    Lalin, Matilde
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 709 : 201 - 218
  • [5] Investigations of zeros near the central point of elliptic curve L-functions
    Miller, Steven J.
    EXPERIMENTAL MATHEMATICS, 2006, 15 (03) : 257 - 279
  • [6] A random matrix model for elliptic curve L-functions of finite conductor
    Duenez, E.
    Huynh, D. K.
    Keating, J. P.
    Miller, S. J.
    Snaith, N. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (11)
  • [7] On the non-vanishing of elliptic curve L-functions at the central point
    Young, Matthew P.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 93 : 1 - 42
  • [8] Zero repulsion in families of elliptic curve L-functions and an observation of Miller
    Marshall, Simon
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 80 - 88
  • [9] Independence of the Zeros of Elliptic Curve L-Functions over Function Fields
    Cha, Byungchul
    Fiorilli, Daniel
    Jouve, Florent
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (09) : 2614 - 2661
  • [10] Moments of quadratic twists of elliptic curve L-functions over function fields
    Bui, Hung M.
    Florea, Alexandra
    Keating, Jonathan P.
    Roditty-Gershon, Edva
    ALGEBRA & NUMBER THEORY, 2020, 14 (07) : 1853 - 1893