uCTRL: Unbiased Contrastive Representation Learning via Alignment and Uniformity for Collaborative Filtering

被引:1
|
作者
Lee, Jae-woong [1 ]
Park, Seongmin [1 ]
Yoon, Mincheol [1 ]
Lee, Jongwuk [1 ]
机构
[1] Sungkyunkwan Univ, Seoul, South Korea
关键词
Alignment and uniformity; popularity bias;
D O I
10.1145/3539618.3592076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because implicit user feedback for the collaborative filtering (CF) models is biased toward popular items, CF models tend to yield recommendation lists with popularity bias. Previous studies have utilized inverse propensity weighting (IPW) or causal inference to mitigate this problem. However, they solely employ pointwise or pairwise loss functions and neglect to adopt a contrastive loss function for learning meaningful user and item representations. In this paper, we propose Unbiased ConTrastive Representation Learning (uCTRL), optimizing alignment and uniformity functions derived from the InfoNCE loss function for CF models. Specifically, we formulate an unbiased alignment function used in uCTRL. We also devise a novel IPW estimation method that removes the bias of both users and items. Despite its simplicity, uCTRL equipped with existing CF models consistently outperforms state-of-the-art unbiased recommender models, up to 12.22% for Recall@20 and 16.33% for NDCG@20 gains, on four benchmark datasets.
引用
收藏
页码:2456 / 2460
页数:5
相关论文
共 50 条
  • [1] Towards Representation Alignment and Uniformity in Collaborative Filtering
    Wang, Chenyang
    Yu, Yuanqing
    Ma, Weizhi
    Zhang, Min
    Chen, Chong
    Liu, Yiqun
    Ma, Shaoping
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1816 - 1825
  • [2] Towards Alignment-Uniformity Aware Representation in Graph Contrastive Learning
    Yan, Rong
    Bao, Peng
    Zhang, Xiao
    Liu, Zhongyi
    Liu, Hui
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 873 - 881
  • [3] Efficient Graph Collaborative Filtering via Contrastive Learning
    Pan, Zhiqiang
    Chen, Honghui
    SENSORS, 2021, 21 (14)
  • [4] Collaborative Filtering Algorithm Based on Contrastive Learning and Filtering Components
    Shen, Ziqi
    Huang, Wenjie
    Luo, Xin
    Zhang, Xiankun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14875 : 100 - 111
  • [5] Learning Invariant Representation Via Contrastive Feature Alignment for Clutter Robust SAR ATR
    Peng B.
    Xie J.
    Peng B.
    Liu L.
    IEEE Geoscience and Remote Sensing Letters, 2023, 20
  • [6] Community-Enhanced Contrastive Learning for Graph Collaborative Filtering
    Xia, Xuchen
    Ma, Wenming
    Zhang, Jinkai
    Zhang, En
    ELECTRONICS, 2023, 12 (23)
  • [7] Community-aware graph contrastive learning for collaborative filtering
    Lin, Dexuan
    Ding, Xuefeng
    Hu, Dasha
    Jiang, Yuming
    APPLIED INTELLIGENCE, 2023, 53 (21) : 25836 - 25849
  • [8] Neighborhood-Enhanced Supervised Contrastive Learning for Collaborative Filtering
    Sun, Peijie
    Wu, Le
    Zhang, Kun
    Chen, Xiangzhi
    Wang, Meng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (05) : 2069 - 2081
  • [9] Joint contrastive learning of structural and semantic for graph collaborative filtering
    Dai, Jie
    Li, Qingshan
    Nong, Tianyi
    Bi, Qipeng
    Chu, Hua
    NEUROCOMPUTING, 2024, 586
  • [10] Community-aware graph contrastive learning for collaborative filtering
    Dexuan Lin
    Xuefeng Ding
    Dasha Hu
    Yuming Jiang
    Applied Intelligence, 2023, 53 : 25836 - 25849