High resolution interferometric temperature compensation using optical fibers with different temperature coefficients

被引:0
|
作者
Tian, Meng [1 ,2 ]
Li, Huicong [1 ,2 ]
Lv, Bing [3 ,4 ]
Huang, Wenzhu [1 ,2 ]
Zhang, Wentao [1 ,2 ]
Li, Fang [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Transducer Technol, Inst Semicond, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing, Peoples R China
[3] North China Elect Power Univ, Hebei Key Lab Power Internet Things Technol, Baoding, Peoples R China
[4] North China Elect Power Univ, Baoding Key Lab Opt Fiber Sensing & Opt Commun, Baoding, Peoples R China
基金
国家重点研发计划;
关键词
interferometric; different temperature coefficients; temperature compensation;
D O I
10.1109/SAS58821.2023.10254120
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
In this paper, we proposed the temperature compensation theory using a pair of unbalanced interferometers composed of different temperature coefficients' optical fibers. The difference between the temperature sensitivities of the two interferometers was analyzed in detail. The larger the difference of temperature coefficients of the sensing arms is, the longer the sensing arm is, and the higher the phase demodulation resolution is, the higher the temperature resolution is. The bend-insensitive single- mode fiber and Boron/Germanium co-doped fiber were used to develop two kinds of unbalanced Michelson interferometers for the experiment. The result showed a temperature sensitivity difference of 3.93 rad/degrees C and a temperature resolution of better than the order of 10-3 degrees C, which is suitable for achieving strain measurement of sub-n epsilon for crustal deformation measurement.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Interferometric high temperature sensor using suspended-core optical fibers
    Linh Viet Nguyen
    Warren-Smith, Stephen C.
    Ebendorff-Heidepriem, Heike
    Monro, Tanya M.
    [J]. OPTICS EXPRESS, 2016, 24 (08): : 8967 - 8977
  • [2] Evaluation of high-temperature absorption coefficients of optical fibers
    Shuto, Y
    Yanagi, S
    Asakawa, S
    Kobayashi, M
    Nagase, R
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (04) : 1008 - 1010
  • [3] Evaluation of High-Temperature Absorption Coefficients of Ionized Gas Plasmas in Optical Fibers
    Shuto, Yoshito
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (03) : 134 - 136
  • [4] Temperature sensor with using of optical fibers
    Jargus, Jan
    Novak, Martin
    Fajkus, Marcel
    Cvejn, Daniel
    Vasinek, Vladimir
    Martinek, Radek
    [J]. FIBER OPTIC SENSORS AND APPLICATIONS XV, 2018, 10654
  • [5] Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry
    Li, Wenhai
    Chen, Liang
    Bao, Xiaoyi
    [J]. OPTICS COMMUNICATIONS, 2014, 311 : 26 - 32
  • [6] High temperature sapphire optical fiber interferometric strain sensor
    Bhatia, V
    Murphy, KA
    May, RG
    Claus, RO
    Tran, TA
    Greene, JA
    Coate, JE
    [J]. HIGH TEMPERATURE AND MATERIALS SCIENCE, 1996, 35 (01): : 31 - 41
  • [7] Temperature-Compensated Interferometric High-Temperature Pressure Sensor Using a Pure Silica Microstructured Optical Fiber
    Reja, Mohammad Istiaque
    Nguyen, Linh, V
    Peng, Lu
    Ebendorff-Heidepriem, Heike
    Warren-Smith, Stephen C.
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [8] A High Resolution Interferometric Fiber-Optic Temperature Sensor "FOTS"
    Elsarnagawy, Tarek D.
    [J]. 2008 CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE, 2008, : 258 - 262
  • [9] A Combined Approach for High-Resolution Corrosion Monitoring and Temperature Compensation Using Ultrasound
    Rommetveit, Tarjei
    Johansen, Tonni F.
    Johnsen, Roy
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (11) : 2843 - 2853
  • [10] Embedded metallized optical fibers for high temperature applications
    Petrie, Christian M.
    Sridharan, Niyanth
    Subramanian, Mohan
    Hehr, Adam
    Norfolk, Mark
    Sheridan, John
    [J]. SMART MATERIALS AND STRUCTURES, 2019, 28 (05)