Spinc-STRUCTURES AND SEIBERG-WITTEN EQUATIONS

被引:0
|
作者
Sergeev, A. G. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Spin(c)-structures; Dirac operator; Seiberg-Witten equations; adiabatic limit; MONOPOLES; DUALITY; SW; GR;
D O I
10.1134/S0040577923080044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Seiberg-Witten equations, found at the end of the 20th century, are one of the main discoveries in the topology and geometry of four-dimensional Riemannian manifolds. They are defined in terms of a Spin(c)-structure that exists on any four-dimensional Riemannian manifold. Like the Yang-Mills equations, the Seiberg-Witten equations are the limit case of a more general supersymmetric Yang-Mills equations. However, unlike the conformally invariant Yang-Mills equations, the Seiberg-Witten equations are not scale invariant. Therefore, in order to obtain "useful information" from them, one must introduce a scale parameter lambda and pass to the limit as lambda -> 8. This is precisely the adiabatic limit studied in this paper.
引用
收藏
页码:1119 / 1123
页数:5
相关论文
共 50 条
  • [1] SEIBERG-WITTEN EQUATIONS ON FOUR-DIMENSIONAL LORENTZIAN Spinc MANIFOLDS
    Degirmenci, Nedim
    Ozdemir, Nulifer
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (04) : 699 - 708
  • [2] Seiberg-Witten Equations on Pseudo-Riemannian Spinc Manifolds With Neutral Signature
    Degirmenci, Nedim
    Karapazar, Senay
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 73 - 88
  • [3] On a system of Seiberg-Witten equations
    Massamba, F
    Thompson, G
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (04) : 643 - 665
  • [4] The Seiberg-Witten equations on Hermitian surfaces
    Lupascu, P
    MATHEMATISCHE NACHRICHTEN, 2002, 242 : 132 - 147
  • [5] Seiberg-Witten invariants and vortex equations
    Garcia-Prada, O
    SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 885 - 934
  • [6] WDVV equations and Seiberg-Witten theory
    Mironov, A
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 103 - 123
  • [7] Variational principle for the Seiberg-Witten equations
    Doria, CM
    Contributions to Nonlinear Analysis: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 247 - 261
  • [8] SEIBERG-WITTEN EQUATIONS WITH NEGATIVE SING
    Degirmenci, Nedim
    Ozdemir, Nulifer
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2010, 3 (02): : 40 - 48
  • [9] The perturbation of the Seiberg-Witten equations revisited
    Furuta, Mikio
    Matsuo, Shinichiroh
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (04) : 1655 - 1668
  • [10] The geometry and physics of the Seiberg-Witten equations
    Wu, SY
    GEOMETRIC ANALYSIS AND APPLICATIONS TO QUANTUM FIELD THEORY, 2002, 205 : 157 - 203