Multi-scale, multi-dimensional binocular endoscopic image depth estimation network

被引:0
|
作者
Wang, Xiongzhi [1 ,2 ]
Nie, Yunfeng [3 ]
Ren, Wenqi [5 ]
Wei, Min [4 ]
Zhang, Jingang [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100039, Peoples R China
[2] Xidian Univ, Sch Aerosp Science&Technol, Xian 710071, Peoples R China
[3] Vrije Univ Brussel & Flanders Make, Dept Appl Phys & Photon, Brussel Photon, B-1050 Brussels, Belgium
[4] Chinese Acad Sci, State Key Lab Informat Secur, Inst Informat Engn, Beijing 100093, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 4, Dept Orthoped, Beijing 100853, Peoples R China
基金
中国国家自然科学基金;
关键词
Depth estimation; Endoscopic datasets; Convolutional neural network; Stereoscopic vision; STEREO; COLONOSCOPY; LESIONS;
D O I
10.1016/j.compbiomed.2023.107305
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
During invasive surgery, the use of deep learning techniques to acquire depth information from lesion sites in real-time is hindered by the lack of endoscopic environmental datasets. This work aims to develop a high-accuracy three-dimensional (3D) simulation model for generating image datasets and acquiring depth information in real-time. Here, we proposed an end-to-end multi-scale supervisory depth estimation network (MMDENet) model for the depth estimation of pairs of binocular images. The proposed MMDENet highlights a multi-scale feature extraction module incorporating contextual information to enhance the correspondence precision of poorly exposed regions. A multi-dimensional information-guidance refinement module is also proposed to refine the initial coarse disparity map. Statistical experimentation demonstrated a 3.14% reduction in endpoint error compared to state-of-the-art methods. With a processing time of approximately 30fps, satisfying the requirements of real-time operation applications. In order to validate the performance of the trained MMDENet in actual endoscopic images, we conduct both qualitative and quantitative analysis with 93.38% high precision, which holds great promise for applications in surgical navigation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Adaptive Deep Learning Network With Multi-Scale and Multi-Dimensional Features for Underwater Image Enhancement
    Qiao, Nianzu
    Dong, Lu
    Sun, Changyin
    IEEE TRANSACTIONS ON BROADCASTING, 2023, 69 (02) : 482 - 494
  • [2] Multi-scale depth classification network for monocular depth estimation
    Yang, Yi
    Tian, Lihua
    Li, Chen
    Zhang, Botong
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [3] Monocular Image Depth Estimation Based on Multi-Scale Attention Oriented Network
    Liu J.
    Wen J.
    Liang Y.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (12): : 52 - 62
  • [4] A new approach to multiaxial fatigue life prediction: A multi-dimensional multi-scale composite neural network with multi-depth
    Pan, Rui
    Gao, Jianxiong
    Meng, Lingchao
    Heng, Fei
    Yang, Haojin
    Engineering Fracture Mechanics, 2024, 310
  • [5] Binocular Depth Estimation Algorithm Based on Multi-Scale Attention Feature Fusion
    Yang Huitong
    Lei Lang
    Lin Yongchun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [6] Multi-Dimensional and Multi-Scale Physical Dehazing Network for Remote Sensing Images
    Zhou, Hao
    Wang, Le
    Li, Qiao
    Guan, Xin
    Tao, Tao
    Remote Sensing, 2024, 16 (24)
  • [7] Multi-scale and multi-dimensional formalism for enterprise modeling
    Aoyama, A
    Naka, Y
    PROCESS SYSTEMS ENGINEERING 2003, PTS A AND B, 2003, 15 : 142 - 147
  • [8] Towards a Multi-Scale Representation of Multi-Dimensional Signals
    Schmidt, Michael
    VII HOTINE-MARUSSI SYMPOSIUM ON MATHEMATICAL GEODESY, 2012, 137 : 119 - 127
  • [9] On multi-scale concepts for multi-dimensional conservation laws
    Gottschlich-Müller, B
    Müller, S
    NUMERICAL TREATMENT OF MULTI-SCALE PROBLEMS, 2001, 70 : 119 - 133
  • [10] Multi-scale depth information fusion network for image dehazing
    Fan, Guodong
    Hua, Zhen
    Li, Jinjiang
    APPLIED INTELLIGENCE, 2021, 51 (10) : 7262 - 7280