Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations

被引:3
|
作者
Wali, Mubashara [1 ]
Arshad, Sadia [1 ]
Eldin, Sayed M. [2 ]
Siddique, Imran [3 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[2] Future Univ Egypt, Fac Engn, Ctr Res, New Cairo 11835, Egypt
[3] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
fractional diffusion equation; numerical approximation; Atangana-Baleanu Caputo derivative; non-singular kernel; stability-convergence;
D O I
10.3934/math.2023772
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we attempt to obtain the approximate solution for the time-space fractional linear and nonlinear diffusion equations. A finite difference approach is given for the solution of both linear and nonlinear fractional order diffusion problems. The Riesz fractional derivative in space is specifically approximated using the centered difference scheme. A system of Atangana-Baleanu Caputo equations that have been converted through spatial discretization is solved using a newly developed modified Simpson's 1/3 formula. A study of the proposed scheme is done to ascertain its stability and convergence. It has been shown that for mesh size h and time steps delta t the recommended method converges at a rate of O(delta t2 + h2). Based on graphic results and numerical examples, the application of the model is also examined.
引用
收藏
页码:15129 / 15147
页数:19
相关论文
共 50 条
  • [1] Numerical approximation of fractional burgers equation with Atangana-Baleanu derivative in Caputo sense
    Yadav, Swati
    Pandey, Rajesh K.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 133
  • [2] Freelance Model with Atangana-Baleanu Caputo Fractional Derivative
    Khan, Fareeha Sami
    Khalid, M.
    Al-moneef, Areej A.
    Ali, Ali Hasan
    Bazighifan, Omar
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [3] Numerical approximations of Atangana-Baleanu Caputo derivative and its application
    Yadav, Swati
    Pandey, Rajesh K.
    Shukla, Anil K.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 118 : 58 - 64
  • [4] NUMERICAL ANALYSIS OF COUPLED FRACTIONAL DIFFERENTIAL EQUATIONS WITH ATANGANA-BALEANU FRACTIONAL DERIVATIVE
    Koca, Ilknur
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (03): : 475 - 486
  • [5] Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu Caputo derivative
    Nadeem, Muhammad
    He, Ji-Huan
    Sedighi, Hamid. M.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 8190 - 8207
  • [6] Analysis of the fractional diffusion equations described by Atangana-Baleanu-Caputo fractional derivative
    Sene, Ndolane
    Abdelmalek, Karima
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 127 : 158 - 164
  • [7] Numerical patterns in reaction-diffusion system with the Caputo and Atangana-Baleanu fractional derivatives
    Owolabi, Kolade M.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 115 : 160 - 169
  • [9] Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense
    Manish Goyal
    Amit Kumar Saraswat
    Amit Prakash
    [J]. Indian Journal of Physics, 2023, 97 : 147 - 164
  • [10] Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense
    Goyal, M.
    Saraswat, A. K.
    Prakash, A.
    [J]. INDIAN JOURNAL OF PHYSICS, 2023, 97 (01) : 147 - 164