Decomposition gradient descent method for bi-objective optimisation

被引:0
|
作者
Chen, Jingjing [1 ]
Li, Genghui [2 ]
Lin, Xi [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-objective optimisation; decomposition strategy; NBI-style Tchebycheff method; gradient descent method; MULTIOBJECTIVE OPTIMIZATION; EVOLUTIONARY ALGORITHMS;
D O I
10.1504/IJBIC.2024.136218
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Population-based decomposition methods decompose a multi-objective optimisation problem (MOP) into a set of single-objective subproblems (SOPs) and then solve them collaboratively to produce a set of Pareto optimal solutions. Most of these methods use heuristics such as genetic algorithms as their search engines. As a result, these methods are not very efficient. This paper investigates how to do a gradient search in multi-objective decomposition methods. We use the NBI-style Tchebycheff method to decompose a MOP since it is not sensitive to the scales of objectives. However, since the objectives of the resultant SOPs are non-differentiable, they cannot be directly optimised by the classical gradient methods. We propose a new gradient descent method, decomposition gradient descent (DGD), to optimise them. We study its convergence property and conduct numerical experiments to show its efficiency.
引用
收藏
页码:28 / 38
页数:12
相关论文
共 50 条
  • [1] Bi-objective robust optimisation
    Kuhn, K.
    Raith, A.
    Schmidt, M.
    Schoebel, A.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 252 (02) : 418 - 431
  • [2] Bi-objective Trade-off with Dynamic Barrier Gradient Descent
    Gong, Chengyue
    Liu, Xingchao
    Liu, Qiang
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [3] Representative Solutions for Bi-Objective Optimisation
    Demirovic, Emir
    Schwind, Nicolas
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1436 - 1443
  • [4] Bi-objective optimisation of a multihead weighing process
    Centre for Quality and Change Management, Universitat Politècnica de València, Camino de Vera, s/n, Valencia
    46022, Spain
    不详
    50595, Colombia
    [J]. Eur. J. Ind. Eng., 1751, 3 (403-423):
  • [5] Bi-objective optimisation of a multihead weighing process
    Carlos Garcia-Diaz, J.
    Pulido-Rojano, Alexander
    Giner-Bosch, Vicent
    [J]. EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2017, 11 (03) : 403 - 423
  • [6] The effect of constraints on bi-objective optimisation of geodetic networks
    Mehdi Eshagh
    Mohammad Amin Alizadeh-Khameneh
    [J]. Acta Geodaetica et Geophysica, 2015, 50 : 449 - 459
  • [7] The effect of constraints on bi-objective optimisation of geodetic networks
    Eshagh, Mehdi
    Alizadeh-Khameneh, Mohammad Amin
    [J]. ACTA GEODAETICA ET GEOPHYSICA, 2015, 50 (04) : 449 - 459
  • [8] Solving the bi-objective optimisation problem with periodic delivery operations using a lexicographic method
    Liu, Cheng-Hsiang
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2016, 54 (08) : 2275 - 2283
  • [9] Bi-objective optimization design of functionally gradient materials
    Huang, JH
    Fadel, GM
    Blouin, VY
    Grujicic, M
    [J]. MATERIALS & DESIGN, 2002, 23 (07) : 657 - 666
  • [10] Bi-objective optimisation of the enzymatic hydrolysis of porcine blood protein
    Perez-Galvez, Raul
    Carmen Almecija, M.
    Javier Espejo, F.
    Guadix, Emilia M.
    Guadix, Antonio
    [J]. BIOCHEMICAL ENGINEERING JOURNAL, 2011, 53 (03) : 305 - 310