Fabrication of core-shell Co@HCN@PANI composite material with enhanced electromagnetic wave absorption

被引:9
|
作者
Meng, Liang [1 ,2 ]
Li, Junjie [1 ]
Li, Xilin [1 ]
Wang, Zhenjun [3 ]
Zhou, Wen [4 ]
机构
[1] Shanghai Normal Univ, Sch Environm & Geog Sci, Shanghai 200234, Peoples R China
[2] Zhejiang Univ, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Peoples R China
[3] Univ Shanghai Sci & Technol, Coll Mech Engn, Shanghai 200093, Peoples R China
[4] South China Univ Technol, Affiliated Hosp 6, Sch Med, Cent Lab, Foshan, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyaniline; Core-shell; Effective absorption bandwidth; Heterogeneous interfaces; EFFICIENT ELECTROCATALYSTS; CARBON; NANOPARTICLES; MICROSPHERES; POLARIZATION; SPHERES; FIBER;
D O I
10.1016/j.jallcom.2023.171528
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A core-shell Co@ hollow carbon nanospheres @ polyaniline nanocomposite for EMW absorption was constructed via soft template, switching liquid phase transport and in-situ polymerization method. Polarization at the interface of Co, HCN shell and PANI enhances the polarization loss of core-shell Co@HCN@PANI nanocomposite. The dense conductive network formed by PANI endows the material with a more significant electronic conduction loss mechanism. Multi-layer heterogeneous interfaces in core-shell structures and multi-centers in PANI molecular chains enrich the polarization relaxation loss mechanism. The natural resonance of magnetic Co at high frequency bands and eddy current thermal effect at low frequency bands ensure the stable magnetic loss of the material. Good impedance matching and enhanced attenuation coefficient further improve the microwave absorption performance of the nanocomposite. Consequently, a minimum reflection loss of -43.63 dB and an effective absorption bandwidth of 9.75 GHz (8-17.75 GHz) are obtained at a matched thickness of 2.8 mm.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fabrication of core-shell nickel ferrite@polypyrrole composite for broadband and efficient electromagnetic wave absorption
    Shu, Ruiwen
    Yun, Kunlong
    Liu, Xinyue
    Xu, Leilei
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2025, 188
  • [2] Core-shell structured Fe/ZnO composite with superior electromagnetic wave absorption performance
    Liu, Qi
    Dai, Jingxiong
    Hu, Fei
    Zhang, Zhiquan
    Xiong, Kun
    Xu, Guangliang
    CERAMICS INTERNATIONAL, 2021, 47 (10) : 14506 - 14514
  • [3] Core-shell architectures: Tailoring the electromagnetic properties for enhanced absorption
    Shao, Chenyang
    Yang, Jie
    Huang, Yujia
    Xing, Yan
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025,
  • [4] Construction of Co/C@MoS2 core-shell nanocubes with enhanced electromagnetic-wave absorption performance
    Wang, Yizhe
    Xu, Jian
    He, Peng
    Liu, Xiaoyun
    Zuo, Peiyuan
    Ma, Wenjun
    Zhuang, Qixin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 905
  • [5] Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption
    Wu, Zhengchen
    Cheng, Han-Wen
    Jin, Chen
    Yang, Bintong
    Xu, Chunyang
    Pei, Ke
    Zhang, Huibin
    Yang, Ziqi
    Che, Renchao
    ADVANCED MATERIALS, 2022, 34 (11)
  • [6] Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption
    Du, Zhilan
    Wang, Dashuang
    Zhang, Xinfang
    Yi, Zhiyu
    Tang, Jihai
    Yang, Pingan
    Cai, Rui
    Yi, Shuang
    Rao, Jinsong
    Zhang, Yuxin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [7] Engineered Core-Shell SiC@SiO2 Nanofibers for Enhanced Electromagnetic Wave Absorption Performance
    Song, Limeng
    Wang, Linan
    Chen, Yongqiang
    Wu, Hongjing
    Song, Bozhen
    Wang, Nannan
    Guan, Li
    Wang, Hailong
    Zhang, Rui
    Zhu, Yanqiu
    Xia, Yongde
    Fan, Bingbing
    SMALL, 2024, 20 (52)
  • [8] Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance
    Wang, Kaifeng
    Chen, Yujie
    Tian, Ran
    Li, Hua
    Zhou, Ying
    Duan, Huanan
    Liu, Hezhou
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) : 11333 - 11342
  • [9] Electromagnetic wave absorption polyimide fabric prepared by coating with core-shell NiFe2O4@PANI nanoparticles
    Wang, Yu
    Wang, Wei
    Zhu, Meifang
    Yu, Dan
    RSC ADVANCES, 2017, 7 (68): : 42891 - 42899
  • [10] The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core-Shell Structured Nanocomposites
    Wan, Gengping
    Luo, Yongming
    Wu, Lihong
    Wang, Guizhen
    NANOSCALE RESEARCH LETTERS, 2018, 13