Improving the Quality of Underwater Wireless Optical Communications in Uncertain Ocean Environments

被引:0
|
作者
Weng, Yang [1 ]
Matsuda, Takumi [2 ]
Maki, Toshihiro [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo, Japan
[2] Meiji Univ, Sch Sci & Technol, Tokyo, Japan
关键词
underwater wireless optical communication; reinforcement learning; autonomous underwater vehicle;
D O I
10.1109/UT49729.2023.10103370
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Underwater wireless optical communication can be used between multiple autonomous underwater vehicles to enhance information sharing during ocean exploration. The quality of optical communication is affected by many marine environmental parameters, such as ocean currents, disturbances, and attenuation. This study proposes using a reinforcement learning algorithm and adding random parameters and thruster delay in the simulated environment to improve the stability of the link. The trained policy enhanced the stability of the link in the simulated environment. This method does not need to model the complex and unknown ocean environment and can incorporate more parameters that affect the quality of underwater optical communication in the future.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Phase coherent digital communications for wireless optical links in turbid underwater environments
    Cochenour, Brandon
    Mullen, Linda
    Laux, Alan
    [J]. 2007 OCEANS, VOLS 1-5, 2007, : 411 - 415
  • [2] Underwater Optical Wireless Communications: Overview
    Spagnolo, Giuseppe Schirripa
    Cozzella, Lorenzo
    Leccese, Fabio
    [J]. SENSORS, 2020, 20 (08)
  • [3] A Survey of Underwater Optical Wireless Communications
    Zeng, Zhaoquan
    Fu, Shu
    Zhang, Huihui
    Dong, Yuhan
    Cheng, Julian
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (01): : 204 - 238
  • [4] Improving the Performance of Underwater Wireless Optical Communications by Pointing Adjustable Beam Arrays
    Cui, Zongmin
    Yue, Peng
    Yi, Xiang
    Li, Jing
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 483 - 497
  • [5] Underwater Target Tracking in Uncertain Multipath Ocean Environments
    Liu, Ben
    Tang, Xu
    Tharmarasa, Ratnasingham
    Kirubarajan, Thia
    Jassemi, Rahim
    Halle, Simon
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (06) : 4899 - 4915
  • [6] Semiconductor optical amplifiers for underwater optical wireless communications
    Peppas, Kostas P.
    Boucouvalas, Anthony C.
    Ghassemloy, Zabih
    Khalighi, Mohhamad-Ali
    Yiannopoulos, Kostas
    Sagias, Nikos C.
    [J]. IET OPTOELECTRONICS, 2017, 11 (01) : 15 - 19
  • [7] Link Misalignment for Underwater Wireless Optical Communications
    Zhang, Huihui
    Dong, Yuhan
    [J]. 2015 ADVANCES IN WIRELESS AND OPTICAL COMMUNICATIONS (RTUWO), 2015, : 215 - 218
  • [8] On Link Misalignment for Underwater Wireless Optical Communications
    Tang, Shijian
    Dong, Yuhan
    Zhang, Xuedan
    [J]. IEEE COMMUNICATIONS LETTERS, 2012, 16 (10) : 1688 - 1690
  • [9] Recent advances in underwater optical wireless communications
    Johnson, Laura J.
    Jasman, Faezah
    Green, Roger J.
    Leeson, Mark S.
    [J]. UNDERWATER TECHNOLOGY, 2014, 32 (03): : 167 - 175
  • [10] Angle of arrival of underwater wireless optical communications
    Niu, Pengcheng
    Yang, Fan
    Jin, Shuang
    Quan, Jinguo
    Dong, Yuhan
    [J]. AOPC 2021: MICRO-OPTICS AND MOEMS, 2021, 12066