Understanding the pavement texture evolution of RIOH Track using multi-scale and spatiotemporal analysis

被引:8
|
作者
Xiao, Shenqing [1 ,2 ]
Li, Mingliang [1 ]
Chen, Bo [3 ]
Zhou, Xingye [4 ]
Xi, Chenchen [5 ]
Tan, Yiqiu [2 ]
机构
[1] Minist Transport, Res Inst Highway, Key Lab Transport Ind Rd Struct & Mat, Beijing 100088, Peoples R China
[2] Harbin Inst Technol, Sch Transportat Sci & Engn, Harbin 150000, Peoples R China
[3] Foshan Univ, Sch Transportat & Civil Engn & Architecture, Foshan 528000, Guangdong, Peoples R China
[4] Minist Transport, Res Inst Highway, Natl Observat & Res Stn Corros Rd Mat & Engn Safet, Beijing 100088, Peoples R China
[5] Zhejiang Sci Res Inst Transport, Key Lab Rd & Bridge Detect & Maintenance Technol Z, Hangzhou 311305, Peoples R China
基金
中国国家自然科学基金;
关键词
Pavement texture; Multi-scale evolution; Self-affine; Texture depth; RIOH track; SKID-RESISTANCE; ROAD-SURFACE; FRICTION;
D O I
10.1016/j.triboint.2023.108492
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To better understand the evolution of pavement texture on different scales, the self-affine characteristics and spatiotemporal variation of pavement texture were respectively analyzed via the long-term observation data from the field RIOH track. Interestingly, the texture roughness of the same pavement exhibits some small-scale similarity and large-scale variability. This variability is also reflected in the spatial variation results (less than 20%) of on-site texture depth. Moreover, the pavement texture depth presents an upward trend with a long-term service environment (traffic polishing/seasonal variation). Particularly with the participation of traffic polishing, the typical texture evolution of the enlarged particle gap and smooth particle surface was also observed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Spatiotemporal evolution analysis of pavement texture depth on RIOH track using statistical and rescaled range approaches
    Xiao, Shenqing
    Zhou, Xingye
    Tan, Yiqiu
    Li, Jianmei
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 338
  • [2] Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach
    Wu, Junqi
    Niu, Zhibin
    Li, Xiang
    Huang, Lizhen
    Nielsen, Per Sieverts
    Liu, Xiufeng
    ENERGY, 2023, 263
  • [3] Video Scene Understanding Using Multi-scale Analysis
    Yang, Yang
    Liu, Jingen
    Shah, Mubarak
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1669 - 1676
  • [4] Scale invariant texture analysis using multi-scale local autocorrelation features
    Kang, Y
    Morooka, K
    Nagahashi, H
    SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 363 - 373
  • [5] Multi-scale binary patterns for texture analysis
    Mäenpää, T
    Pietikäinen, M
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 885 - 892
  • [6] Remote sensing texture analysis using multi-parameter and multi-scale features
    Li, Y
    Peng, JX
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2003, 69 (04): : 351 - 355
  • [7] Multi-scale texture modeling
    Hielscher, Ralf
    Schaeben, Helmut
    MATHEMATICAL GEOSCIENCES, 2008, 40 (01) : 63 - 82
  • [8] Multi-Scale Texture Modeling
    Ralf Hielscher
    Helmut Schaeben
    Mathematical Geosciences, 2008, 40 : 63 - 82
  • [9] Texture description using multi-scale morphological GLCM
    Mudassir Rafi
    Susanta Mukhopadhyay
    Multimedia Tools and Applications, 2018, 77 : 30505 - 30532
  • [10] Efficient texture representation using multi-scale regions
    Wildenauer, Horst
    Micusik, Branislav
    Vincze, Markus
    COMPUTER VISION - ACCV 2007, PT I, PROCEEDINGS, 2007, 4843 : 65 - 74