Powerfully Nilpotent Groups of Class 2

被引:0
|
作者
Williams, James [1 ]
机构
[1] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
powerfully nilpotent; coclass; powerful p-group;
D O I
10.1080/10586458.2021.1926003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the powerful nilpotency class of powerfully nilpotent groups of standard nilpotency class 2. We outline the process of collecting data using the computer algebra system GAP, formulating a conjecture based on the data, and finally we prove the conjecture. In particular, we prove that for a powerfully nilpotent group of nilpotency class 2 and order p(n), where p is an odd prime, the powerful nilpotency class of G is at most the integer part of n/2 . We also identify and explain what this means in terms of the powerful coclass of the group.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 50 条
  • [1] Powerfully nilpotent groups of maximal powerful class
    G. Traustason
    J. Williams
    Monatshefte für Mathematik, 2020, 191 : 779 - 799
  • [2] Powerfully nilpotent groups of maximal powerful class
    Traustason, G.
    Williams, J.
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (04): : 779 - 799
  • [3] Powerfully nilpotent groups
    Traustason, Gunnar
    Williams, James
    JOURNAL OF ALGEBRA, 2019, 522 : 80 - 100
  • [4] Powerfully nilpotent groups of rank 2 or small order
    Traustason, Gunnar
    Williams, James
    JOURNAL OF GROUP THEORY, 2020, 23 (04) : 641 - 658
  • [5] AUTOMORPHISMS OF NILPOTENT GROUPS OF CLASS 2
    MERKLEN, HA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A476 - A476
  • [6] AUTOMORPHISMS OF NILPOTENT GROUPS OF CLASS-2
    MERKLEN, H
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1976, 48 (02): : 359 - 359
  • [7] On odd order nilpotent groups with class 2
    Vivek Kumar Jain
    Archiv der Mathematik, 2010, 94 : 29 - 34
  • [8] On odd order nilpotent groups with class 2
    Jain, Vivek Kumar
    ARCHIV DER MATHEMATIK, 2010, 94 (01) : 29 - 34
  • [9] NILPOTENT SUBGROUPS OF CLASS 2 IN FINITE GROUPS
    Sabatini, Luca
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (08) : 3241 - 3244
  • [10] Finite class 2 nilpotent and Heisenberg groups
    Szabo, David R.
    JOURNAL OF GROUP THEORY, 2025,