In this paper, we consider the semilinear pseudo-parabolic equation with cone degenerate viscoelastic term ut+Delta B2ut+Delta B2u-integral 0tg(t-s)Delta B2u(s)ds=f(u),inintBx(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t+\Delta _{\mathbb B}<^>{2} u_t+\Delta _{\mathbb B}<^>{2}u-\int _0<^>t g(t-s)\Delta _{\mathbb B}<^>{2}u(s)ds=f(u),\ \text{ in } \text{ int }\mathbb B\times (0,T), \end{aligned}$$\end{document}with initial and boundary conditions, where f(u)=|u|p-2u-1|B|integral B|u|p-2udx1x1dx '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=|u|<^>{p-2}u-\frac{1}{|\mathbb B|}\displaystyle \int _{\mathbb B}|u|<^>{p-2}u\frac{dx_1}{x_1}dx'$$\end{document}. We construct several conditions for initial data which leads to global existence of the solutions or the solutions blowing up in finite time. Moreover, the asymptotic behavior and the bounds of blow-up time for the solutions are given.