A machine learning approach for resource mapping analysis of greenhouse gas removal technologies
被引:1
|
作者:
Asibor, Jude O.
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, EnglandCranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, England
Asibor, Jude O.
[1
]
Clough, Peter T.
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, EnglandCranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, England
Clough, Peter T.
[1
]
Nabavi, Seyed Ali
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, EnglandCranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, England
Nabavi, Seyed Ali
[1
]
Manovic, Vasilije
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, EnglandCranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, England
Manovic, Vasilije
[1
]
机构:
[1] Cranfield Univ, Sch Water Energy & Environm, Energy & Sustainabil Theme, Cranfield MK43 0AL, Beds, England
Machine learning;
Climate change mitigation;
Carbon capture and storage;
Negative emission technologies;
Random forest;
BECCS;
D O I:
10.1016/j.egycc.2023.100112
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
In this study, machine learning (ML) was applied to investigate the suitability of a location to deploy five greenhouse gas removal (GGR) methods within a global context, based on a location's bio-geophysical and techno-economic characteristics. The GGR methods considered are forestation, enhanced weathering (EW), direct air carbon capture and storage (DACCS), bioenergy with carbon capture and storage (BECCS) and biochar. An unsupervised ML (hierarchical clustering) technique was applied to label the dataset. Seven supervised ML algorithms were applied in training and testing the labelled dataset with the k-Nearest neighbour (k-NN), Artificial Neural Network (ANN) and Random Forest algorithms having the highest performance accuracies of 96%, 98% and 100% respectively. A case study of Scotland's suitability to deploy these GGR methods was carried out with obtained results indicating a high correlation between the ML model results and information in the available literature. While the performance accuracy of the ML models was typically high (76 100%), an assessment of its decision-making logic (model interpretation) revealed some limitations regarding the impact of the various input variables on the outputs.
机构:
Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, EnglandCranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, England
Asibor, Jude O.
Clough, Peter T.
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, EnglandCranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, England
Clough, Peter T.
Nabavi, Seyed Ali
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, EnglandCranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, England
Nabavi, Seyed Ali
Manovic, Vasilije
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, EnglandCranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, England
机构:
Univ London Imperial Coll Sci Technol & Med, Energy Futures Lab, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Energy Futures Lab, London SW7 2AZ, England
Lomax, Guy
Workman, Mark
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Grantham Inst Climate Change, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Energy Futures Lab, London SW7 2AZ, England
Workman, Mark
Lenton, Timothy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Exeter, Coll Life & Environm Sci, Exeter, Devon, EnglandUniv London Imperial Coll Sci Technol & Med, Energy Futures Lab, London SW7 2AZ, England
Lenton, Timothy
Shah, Nilay
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Energy Futures Lab, London SW7 2AZ, England
机构:
Agr Res Educ & Extens Org, Agr Engn Res Inst, POB 31585-845, Karaj, Alborz, IranAgr Res Educ & Extens Org, Agr Engn Res Inst, POB 31585-845, Karaj, Alborz, Iran
Dehghanisanij, Hossein
Yargholi, Bahman
论文数: 0引用数: 0
h-index: 0
机构:
Agr Res Educ & Extens Org, Agr Engn Res Inst, POB 31585-845, Karaj, Alborz, IranAgr Res Educ & Extens Org, Agr Engn Res Inst, POB 31585-845, Karaj, Alborz, Iran
Yargholi, Bahman
论文数: 引用数:
h-index:
机构:
Emami, Somayeh
Emami, Hojjat
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bonab, Dept Comp Engn, Bonab, IranAgr Res Educ & Extens Org, Agr Engn Res Inst, POB 31585-845, Karaj, Alborz, Iran
Emami, Hojjat
Fujimaki, Haruyuki
论文数: 0引用数: 0
h-index: 0
机构:
Tottori Univ, Arid Land Res Ctr, Tottori, JapanAgr Res Educ & Extens Org, Agr Engn Res Inst, POB 31585-845, Karaj, Alborz, Iran
机构:
Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Bedfordshire, EnglandCranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Bedfordshire, England
Asibor, Jude O.
Clough, Peter T.
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Bedfordshire, England
Cranfield Univ, Cranfield MK43 0AL, Bedfordshire, EnglandCranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Bedfordshire, England
Clough, Peter T.
Nabavi, Seyed Ali
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Bedfordshire, EnglandCranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Bedfordshire, England
Nabavi, Seyed Ali
Manovic, Vasilije
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Bedfordshire, EnglandCranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Bedfordshire, England