Analyzing Fake Sports News Detection Methods Using Attention Mechanism and Neural Networks in the Sports Industry

被引:0
|
作者
Zhu, Muqing [1 ]
机构
[1] Univ Sydney, Camperdown, NSW 2006, Australia
来源
REVISTA DE PSICOLOGIA DEL DEPORTE | 2023年 / 32卷 / 04期
关键词
Fake sports news detection; Multimodal feature; Attention; Neural network; sports sector;
D O I
暂无
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
In an era marked by the rapid proliferation of Internet-based social platforms, efficient data dissemination across networks has reached unprecedented levels. However, this widespread accessibility to information has also ushered in a concerning trend -the propagation of false and deceptive narratives. The consequences of fake news, especially in the context of the sports sector, are far-reaching. Beyond eroding trust in media sources, fake sports news can instigate social unrest and disruption with implications extending into politics and the economy. Recognizing the urgent need to address this challenge, this study embarks on the vital task of automatically detecting fake sports news within the complex landscape of online content. Fake sports news typically comprises statements or reports containing elements of falsehood, often diverging significantly from the actual events they purport to describe. Such misinformation is frequently disseminated for political or economic reasons, making its accurate identification formidable.To tackle this pressing issue, we propose a comprehensive fake sports news detection framework termed MFNDF (Multimodal Fake News Detection in Sports). This innovative framework leverages a multifaceted approach, extracting features from three distinct modalities.Firstly, we employ the BERT model for text feature extraction, fine-tuning the extracted text features through a fully connected (FC) layer to enhance the representation of news semantics.Secondly, in image feature extraction, we harness the power of the DenseNet pre-training model to extract convolution features from image content. Additionally, we utilize the Discrete Cosine Transform (DCT) algorithm to extract image frequency domain features, which aid in detecting image tampering and repeated compression -a common tactic employed in creating fake sports news images.Thirdly, we delve into the realm of user context, mining valuable insights from users' behavioral features and news statistical features through advanced feature engineering techniques.Furthermore, we introduce an attention mechanism, a critical component of our approach, to assign weights to word vectors within the text feature space. This attention mechanism takes into account both image features and word vectors, thereby facilitating the fusion of image and text information. The resulting feature vector, enriched with multimodal data, enhances the overall performance of our detection model.Systematic experiments conducted on MFNDF confirm its superior effectiveness in the realm of fake sports news detection. By addressing the critical challenge of identifying deceptive narratives within the sports sector, our research strives to mitigate the adverse impact of fake sports news and safeguard the integrity of information in the dynamic world of sports reporting."
引用
收藏
页码:133 / 142
页数:10
相关论文
共 50 条
  • [1] Fake News Detection on Fake.Br Using Hierarchical Attention Networks
    Okano, Emerson Yoshiaki
    Liu, Zebin
    Ji, Donghong
    Ruiz, Evandro Eduardo Seron
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2020, 2020, 12037 : 143 - 152
  • [2] FAKE NEWS DETECTION USING DEEP RECURRENT NEURAL NETWORKS
    Jiang, Tao
    Li, Jian Ping
    Ul Haq, Amin
    Saboor, Abdus
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 205 - 208
  • [3] Fake news detection using dual BERT deep neural networks
    Farokhian, Mahmood
    Rafe, Vahid
    Veisi, Hadi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 43831 - 43848
  • [4] Fake news detection using dual BERT deep neural networks
    Mahmood Farokhian
    Vahid Rafe
    Hadi Veisi
    Multimedia Tools and Applications, 2024, 83 : 43831 - 43848
  • [5] Multimodal Fusion with BERT and Attention Mechanism for Fake News Detection
    Nguyen Manh Duc Tuan
    Pham Quang Nhat Minh
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 43 - 48
  • [6] THE COMBINATION OF CONVOLUTION NEURAL NETWORKS AND DEEP NEURAL NETWORKS FOR FAKE NEWS DETECTION
    Jawad, Zainab A.
    Obaid, Ahmed J.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2023, 18 (01): : 814 - 826
  • [7] Fake News Detection Using a Blend of Neural Networks: An Application of Deep Learning
    Agarwal A.
    Mittal M.
    Pathak A.
    Goyal L.M.
    SN Computer Science, 2020, 1 (3)
  • [8] Using Topic Modeling and Adversarial Neural Networks for Fake News Video Detection
    Choi, Hyewon
    Ko, Youngjoong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2950 - 2954
  • [9] Self Multi-Head Attention-based Convolutional Neural Networks for fake news detection
    Fang, Yong
    Gao, Jian
    Huang, Cheng
    Peng, Hua
    Wu, Runpu
    PLOS ONE, 2019, 14 (09):
  • [10] A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks
    Song, Chenguang
    Ning, Nianwen
    Zhang, Yunlei
    Wu, Bin
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (01)