Holographic Beamforming for LEO Satellites

被引:3
|
作者
Hu, Xinyuan [1 ]
Deng, Ruoqi [1 ]
Di, Boya [1 ]
Zhang, Hongliang [1 ]
Song, Lingyang [1 ,2 ]
机构
[1] Peking Univ, Sch Elect, State Key Lab Adv Opt Commun Syst & Networks, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
基金
北京市自然科学基金;
关键词
Array signal processing; Satellite broadcasting; Low earth orbit satellites; Satellites; Satellite communication; Interference; Hardware; Reconfigurable holographic metasurface; holographic beamforming; LEO satellite communication;
D O I
10.1109/LCOMM.2023.3301491
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Low-earth-orbit (LEO) satellite communication networks are expected to provide global massive connectivity and high-speed data services for terrestrial users. Reconfigurable holographic surfaces (RHSs) can fulfill such vision by achieving holographic beamforming with low power consumption and hardware cost. In this letter, we consider an RHS-aided LEO satellite communication system, where a satellite equipped with an RHS broadcasts to multiple user terminals via holographic beamforming. To derive the minimum number of elements for RHS that can guarantee the system performance, we first develop a holographic beamforming optimization algorithm to maximize the sum rate, based on which the closed-form expression of the maximum sum rate is obtained. By comparing the RHS-aided system with the phased array-aided system, we then discuss the conditions when the RHS can achieve a higher sum rate than the phased array. Simulation results validate the theoretical analysis and show the RHS can meet the sum rate requirement of the LEO satellite communication system with low hardware cost.
引用
收藏
页码:2717 / 2721
页数:5
相关论文
共 50 条
  • [1] Performance Analysis and Implementation of Spatial and Blind Beamforming Algorithms for Tracking LEO Satellites with Adaptive Antenna Arrays
    Anton, Alberto
    Martinez, Ramon
    Salas, Miguel A.
    Torre, Alberto
    2009 3RD EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, VOLS 1-6, 2009, : 191 - +
  • [2] An autonomous navigator for LEO satellites
    Pascal, V
    Marcille, H
    Damilano, P
    SPACEFLIGHT DYNAMICS 1998, VOL 100, PART 1 AND 2, 1998, 100 : 657 - 669
  • [3] Predicting the visibility of LEO satellites
    Network Solutions Sector, 1421 Shure Dr., Arlington Heights, IL 60004, United States
    IEEE Trans. Aerosp. Electron. Syst., 4 (1183-1190):
  • [4] Electrodynamic deorbiting of LEO satellites
    Dobrowolny, M
    Vannaroni, G
    De Venuto, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-GEOPHYSICS AND SPACE PHYSICS, 2000, 23 (01): : 85 - 105
  • [5] Doppler characterization for LEO satellites
    Ali, I
    Al-Dhahir, N
    Hershey, JE
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (03) : 309 - 313
  • [6] Photonic beamforming for communications satellites
    Drummond, Miguel, V
    Oliveira, Rui L., V
    Nogueira, Rogerio N.
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [7] Estimation of Doppler Curve for LEO Satellites
    Rouzegar, Hossein
    Ghanbarisabagh, Mohammad
    WIRELESS PERSONAL COMMUNICATIONS, 2019, 108 (04) : 2195 - 2212
  • [8] Modelling natural formations of LEO satellites
    Halsall, M.
    Palmer, P. L.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 99 (02): : 105 - 127
  • [9] Downlink Cooperative MIMO in LEO Satellites
    Richter, Rei
    Bergel, Itsik
    Noam, Yair
    Zehavi, Ephraim
    IEEE ACCESS, 2020, 8 : 213866 - 213881
  • [10] A characterization system for LEO satellites batteries
    Baccari, Silvio
    Vasca, Francesco
    Mostacciuolo, Elisa
    Iannelli, Luigi
    Sagnelli, Salvatore
    Luisi, Raffaele
    Stanzione, Vincenzo
    2019 EUROPEAN SPACE POWER CONFERENCE (ESPC), 2019,