HYPONORMALITY OF SPECIFIC UNBOUNDED PRODUCT OF DENSELY DEFINED COMPOSITION OPERATORS IN L2 SPACES

被引:0
|
作者
Zhou, Hang [1 ]
机构
[1] Guangzhou Coll Commerce, Dept Informat Technol & Engn, Guangzhou 511363, GD, Peoples R China
来源
OPERATORS AND MATRICES | 2024年 / 18卷 / 01期
关键词
Unbounded product; densely defined; composition operators; L2; space; hypo;
D O I
10.7153/oam-2024-18-01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, A , mu) be a sigma -finite measure space. A transformation phi : X -> X is nonsingular if mu o phi-1 is absolutely continuous with respect with mu . For this non-singular transformation, the composition operator C phi : D(C phi) -> L2( mu) is defined by C phi f= f o phi , f E D(C phi ). For a fixed positive integer n 2, basic properties of product C phi n center dot center dot center dot C phi 1 in L2( mu) are conveyed in Section 3-5, including the dense definiteness, kernel, adjoint of (not necessarily bounded) C phi n center dot center dot center dot C phi 1 . Under the assistance of these properties, when C phi 1 ,C phi 2, center dot center dot center dot ,C phi n are densely defined, hyponormality of specific (not necessarily bounded) C phi n center dot center dot center dot C phi 1 in L2( mu) is characterized in Section 6.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Normality and Quasinormality of Specific Bounded Product of Densely Defined Composition Operators in L2 Spaces
    Zhou, Hang
    CONCRETE OPERATORS, 2022, 9 (01): : 86 - 95
  • [2] Cohyponormality of Unbounded Product of Composition Operators in L2 Spaces
    Zhou, Hang
    Su, Qing
    JOURNAL OF FUNCTION SPACES, 2025, 2025 (01)
  • [3] Unbounded Hyperexpansive Weighted Composition Operators on L2(Σ)
    Estaremi, Y.
    Shamsigamchi, S.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 671 - 676
  • [4] On unbounded composition operators in L2-spaces
    Budzynski, Piotr
    Jablonski, Zenon Jan
    Jung, Il Bong
    Stochel, Jan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) : 663 - 688
  • [5] Unbounded subnormal composition operators in L2-spaces
    Budzynski, Piotr
    Jablonski, Zenon Jan
    Jung, Il Bong
    Stochel, Jan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (07) : 2110 - 2164
  • [6] Reciprocals of Weighted Composition Operators in L2 Spaces
    Budzynski, Piotr
    RESULTS IN MATHEMATICS, 2024, 79 (03)
  • [7] SPECTRA OF NORMAL COMPOSITION OPERATORS ON L2 SPACES
    SINGH, RK
    VELUCHAMY, T
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (10): : 1123 - 1131
  • [8] Unbounded Weighted Composition Operators in L2-Spaces Preface
    Budzynski, Piotr
    Jablonski, Zenon
    Jung, Il Bong
    Stochel, Jan
    UNBOUNDED WEIGHTED COMPOSITION OPERATORS IN L2-SPACES, 2018, 2209 : VII - +
  • [9] A Note on Unbounded Hyponormal Composition Operators in L2-Spaces
    Budzynski, Piotr
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [10] Aluthge transforms of unbounded weighted composition operators in L2-spaces
    Benhida, Chafiq
    Budzynski, Piotr
    Trepkowski, Jacek
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (10) : 1888 - 1910