A new cohomology class on the moduli space of curves

被引:14
|
作者
Norbury, Paul [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
关键词
GROMOV-WITTEN INVARIANTS; TOPOLOGICAL RECURSION; INTERSECTION THEORY;
D O I
10.2140/gt.2023.27.2695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a collection Theta(g,n) is an element of H4g-4 ((M) over bar (g,n), Q) for 2g - 2 + n> 0 of cohomology classes that restrict naturally to boundary divisors. We prove that the intersection numbers integral(M) over bar (g,n), Theta(g,n) Pi(n)(i=1) psi(mi)(i) can be recursively calculated. We conjecture that a generating function for these intersection numbers is a tau function of the KdV hierarchy. This is analogous to the conjecture of Witten proven by Kontsevich that a generating function for the intersection numbers integral(M) over bar (g,n), Theta(g,n) Pi(n)(i=1) psi(mi)(i) is a tau function of the KdV hierarchy.
引用
收藏
页码:2695 / 2761
页数:67
相关论文
共 50 条