Bio-Inspired Dark Adaptive Nighttime Object Detection

被引:1
|
作者
Hung, Kuo-Feng [1 ]
Lin, Kang-Ping [1 ]
机构
[1] Chung Yuan Christian Univ, Elect Engn Dept, Taoyuan City 320314, Taiwan
关键词
bio-inspired; dark adaptation; object detection;
D O I
10.3390/biomimetics9030158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nighttime object detection is challenging due to dim, uneven lighting. The IIHS research conducted in 2022 shows that pedestrian anti-collision systems are less effective at night. Common solutions utilize costly sensors, such as thermal imaging and LiDAR, aiming for highly accurate detection. Conversely, this study employs a low-cost 2D image approach to address the problem by drawing inspiration from biological dark adaptation mechanisms, simulating functions like pupils and photoreceptor cells. Instead of relying on extensive machine learning with day-to-night image conversions, it focuses on image fusion and gamma correction to train deep neural networks for dark adaptation. This research also involves creating a simulated environment ranging from 0 lux to high brightness, testing the limits of object detection, and offering a high dynamic range testing method. Results indicate that the dark adaptation model developed in this study improves the mean average precision (mAP) by 1.5-6% compared to traditional models. Our model is capable of functioning in both twilight and night, showcasing academic novelty. Future developments could include using virtual light in specific image areas or integrating with smart car lighting to enhance detection accuracy, thereby improving safety for pedestrians and drivers.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Adaptive Bio-inspired Signals for Better Object Characterisation
    Dmitrieva, Mariia
    Brown, Keith
    Lane, David
    BIOMIMETIC AND BIOHYBRID SYSTEMS, LIVING MACHINES 2015, 2015, 9222 : 403 - 409
  • [2] BRSTD: Bio-Inspired Remote Sensing Tiny Object Detection
    Huang, Sihan
    Lin, Chuan
    Jiang, Xintong
    Qu, Zhenshen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [3] Autonomous Bio-Inspired Small-Object Detection and Avoidance
    Ohradzansky, Michael
    Alvarez, Hector E.
    Keshavan, Jishnu
    Ranganathan, Badri N.
    Humbert, J. Sean
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 3442 - 3447
  • [4] Active vision: on the relevance of a bio-inspired approach for object detection
    Hoang, Kevin
    Pitti, Alexandre
    Goudou, Jean-Francois
    Dufour, Jean-Yves
    Gaussier, Philippe
    BIOINSPIRATION & BIOMIMETICS, 2020, 15 (02)
  • [5] Bio-inspired enhancement network for object detection in adverse conditions
    Wang, Ruopu
    Lin, Chuan
    Pan, Yongcai
    Zhao, Peng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [6] Acceleration of Moving Object Detection in Bio-Inspired Computer Vision
    Sanchez, Jose L.
    Viana, Raul
    Lopez, Maria T.
    Fernandez-Caballero, Antonio
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 364 - 373
  • [7] A Bio-Inspired Method for Object Representation
    Hui, Wei
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [8] Bio-inspired mechanically adaptive nanocomposites
    Zhang, Yefei
    Pon, Nanetta
    Rowan, Stuart
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [9] MirrorNet: Bio-Inspired Camouflaged Object Segmentation
    Yan, Jinnan
    Trung-Nghia Le
    Khanh-Duy Nguyen
    Minh-Triet Tran
    Thanh-Toan Do
    Nguyen, Tam, V
    IEEE ACCESS, 2021, 9 : 43290 - 43300
  • [10] A bio-inspired SOSNN model for object recognition
    Liu, Jiaxing
    Zhao, Guoping
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 861 - 868