Integrated metabolome and transcriptome analysis identifies candidate genes involved in triterpenoid saponin biosynthesis in leaves of Centella asiatica (L.) Urban

被引:2
|
作者
Wan, Lingyun [1 ,2 ,3 ]
Huang, Qiulan [4 ]
Li, Cui [2 ,3 ]
Yu, Haixia [1 ,2 ,3 ]
Tan, Guiyu [1 ,2 ,3 ]
Wei, Shugen [1 ,2 ,3 ]
El-Sappah, Ahmed H. [4 ,5 ]
Sooranna, Suren [3 ,6 ]
Zhang, Kun [1 ,2 ,3 ]
Pan, Limei [1 ,2 ,3 ]
Zhang, Zhanjiang [1 ,2 ,3 ]
Lei, Ming [2 ,3 ]
机构
[1] Guangxi Key Lab High Qual Format & Utilizat Dao Di, Guangxi Bot Garden Med Plants, Nanning, Peoples R China
[2] Natl Ctr Tradit Chinese Med TCM Inheritance & Inno, Guangxi Bot Garden Med Plants, Nanning, Peoples R China
[3] Natl Engn Res Ctr Dev Southwestern Endangered Med, Guangxi Bot Garden Med Plants, Nanning, Peoples R China
[4] Yibin Univ, Fac Agr Forestry & Food Engn, Yibin, Peoples R China
[5] Zagazig Univ, Fac Agr, Genet Dept, Zagazig, Egypt
[6] Imperial Coll London, Dept Metab Digest & Reprod, London, England
来源
关键词
Centella asiatica; transcriptome; metabolome; triterpenoid saponin; candidate gene; ISOPENTENYL DIPHOSPHATE ISOMERASE; MOLECULAR-CLONING; PENTACYCLIC TRITERPENOIDS; EXPRESSION; SYNTHASES; ENZYME; DIVERSITY; REDUCTASE; CDNA;
D O I
10.3389/fpls.2023.1295186
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Centella asiatica (L.) Urban is a well-known medicinal plant which has multiple pharmacological properties. Notably, the leaves of C. asiatica contain large amounts of triterpenoid saponins. However, there have only been a few studies systematically elucidating the metabolic dynamics and transcriptional differences regarding triterpenoid saponin biosynthesis during the leaf development stages of C. asiatica. Here, we performed a comprehensive analysis of the metabolome and transcriptome to reveal the dynamic patterns of triterpenoid saponin accumulation and identified the key candidate genes associated with their biosynthesis in C. asiatica leaves. In this study, we found that the key precursors in the synthesis of terpenoids, including DMAPP, IPP and beta-amyrin, as well as 22 triterpenes and eight triterpenoid saponins were considered as differentially accumulated metabolites. The concentrations of DMAPP, IPP and beta-amyrin showed significant increases during the entire stage of leaf development. The levels of 12 triterpenes decreased only during the later stages of leaf development, but five triterpenoid saponins rapidly accumulated at the early stages, and later decreased to a constant level. Furthermore, 48 genes involved in the MVA, MEP and 2, 3-oxidosqualene biosynthetic pathways were selected following gene annotation. Then, 17 CYP450s and 26 UGTs, which are respectively responsible for backbone modifications, were used for phylogenetic-tree construction and time-specific expression analysis. From these data, by integrating metabolomics and transcriptomics analyses, we identified CaHDR1 and CaIDI2 as the candidate genes associated with DMAPP and IPP synthesis, respectively, and Ca beta AS1 as the one regulating beta-amyrin synthesis. Two genes from the CYP716 family were confirmed as CaCYP716A83 and CaCYP716C11. We also selected two UGT73 families as candidate genes, associated with glycosylation of the terpenoid backbone at C-3 in C. asiatica. These findings will pave the way for further research on the molecular mechanisms associated with triterpenoid saponin biosynthesis in C. asiatica.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Transcriptome analysis identifies putative genes involved in triterpenoid biosynthesis in Platycodon grandiflorus
    Yu, Hanwen
    Liu, Mengli
    Yin, Minzhen
    Shan, Tingyu
    Peng, Huasheng
    Wang, Jutao
    Chang, Xiangwei
    Peng, Daiyin
    Zha, Liangping
    Gui, Shuangying
    PLANTA, 2021, 254 (02)
  • [2] Transcriptome analysis identifies putative genes involved in triterpenoid biosynthesis in Platycodon grandiflorus
    Hanwen Yu
    Mengli Liu
    Minzhen Yin
    Tingyu Shan
    Huasheng Peng
    Jutao Wang
    Xiangwei Chang
    Daiyin Peng
    Liangping Zha
    Shuangying Gui
    Planta, 2021, 254
  • [3] Profiling of triterpenoid saponin content variation in different chemotypic accessions of Centella asiatica L.
    Singh, Jyoti
    Sangwan, Rajender Singh
    Gupta, Sanjeev
    Saxena, Sangeeta
    Sangwan, Neelam S.
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2015, 13 (02): : 176 - 179
  • [4] Combined Analysis of the Metabolome and Transcriptome Identified Candidate Genes Involved in Phenolic Acid Biosynthesis in the Leaves of Cyclocarya paliurus
    Lin, Weida
    Li, Yueling
    Lu, Qiuwei
    Lu, Hongfei
    Li, Junmin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (04)
  • [5] Full-length transcriptome, proteomics and metabolite analysis reveal candidate genes involved triterpenoid saponin biosynthesis in Dipsacus asperoides
    Pan, Jie
    Huang, Chaokang
    Yao, Weilin
    Niu, Tengfei
    Yang, Xiaolin
    Wang, Rufeng
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [6] Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis
    Ma, Chun-Hua
    Gao, Zheng-Jie
    Zhang, Jia-Jin
    Zhang, Wei
    Shao, Jian-Hui
    Hai, Mei-Rong
    Chen, Jun-Wen
    Yang, Sheng-Chao
    Zhang, Guang-Hui
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [7] Identification and Quantification of Triterpenoid Centelloids in Centella asiatica (L.) Urban by Densitometric TLC
    James, Jacinda
    Dubery, Ian
    JPC-JOURNAL OF PLANAR CHROMATOGRAPHY-MODERN TLC, 2011, 24 (01) : 82 - 87
  • [8] Integrated Analysis of the Transcriptome and Metabolome Reveals Genes Involved in Terpenoid and Flavonoid Biosynthesis in the Loblolly Pine (Pinus taeda L.)
    Mao, Jipeng
    Huang, Linwang
    Chen, Manyu
    Zeng, Weishan
    Feng, Zhiheng
    Huang, Shaowei
    Liu, Tianyi
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [9] Identification and Quantification of Triterpenoid Centelloids in Centella asiatica (L.) Urban by Densitometric TLC
    Jacinda James
    Ian Dubery
    JPC – Journal of Planar Chromatography – Modern TLC, 2011, 24 : 82 - 87
  • [10] De novo transcriptome analysis and identification of candidate genes associated with triterpenoid biosynthesis in Trichosanthes cucumerina L.
    Lertphadungkit, Pornpatsorn
    Qiao, Xue
    Sirikantaramas, Supaart
    Satitpatipan, Veena
    Ye, Min
    Bunsupa, Somnuk
    PLANT CELL REPORTS, 2021, 40 (10) : 1845 - 1858