Background: Targeting the gut microbiota may become a new therapeutic to prevent and treat sepsis. Nonetheless, the causal relationship between specific intestinal flora and sepsis is still unclear.Methods: A two-sample Mendelian randomization study was performed using the summary statistics of gut microbiota from the largest available genome-wide association study (n = 18,340). The summary statistics of sepsis were obtained from the UK Biobank (n = 486,484). Inverse-variance weighted, weighted median and MR-Egger were used to examine the causal association between gut microbiota and sepsis. Cochrane's Q test, MR-Egger intercept test, MR-PRESSO Global test and Rucker's Q'-test were used for sensitivity analyses. The leave-one method was used for testing the stability of MR results, and Bonferroni-corrected was used to test the strength of the causal relationship between exposure and outcome.Results: Nine intestinal microflora were found causally associated with sepsis, and 11 intestinal microflora were causally associated with 28-day death in sepsis. Among them, Order Victivallales had a strong causality with lower risk of sepsis (OR = 0.86, 95% CI: 0.78-0.94, p = .00165) and lower 28-day mortality of sepsis (OR = 0.68, 95% CI: 0.53-0.87, p = .00179) after Bonferroni-corrected test. No pleiotropy was detected.Conclusions: Through the two-sample MR analysis, we identified the specific intestinal flora that had a causal relationship with the risk and prognosis of sepsis at the level of gene prediction, which may provide helpful biomarkers for early disease diagnosis and potential therapeutic targets for sepsis.