A new renewable energy system integrated with compressed air energy storage and multistage desalination

被引:26
|
作者
Karaca, Ali Erdogan [1 ]
Dincer, Ibrahim [1 ]
Nitefor, Michael [2 ]
机构
[1] Ontario Tech Univ, Fac Engn & Appl Sci, Clean Energy Res Lab, 2000 Simcoe St North, Oshawa, ON L1H 7K4, Canada
[2] Air Lab Inc, 493 Broadview Ave, Toronto, ON M4K 2N4, Canada
关键词
Sustainability; Wind; Solar; Energy; Desalination; Energy storage; Compressed air; Organic Rankine cycle; Exergy; Efficiency; THERMODYNAMIC ANALYSIS; SOLAR; POWER; OPTIMIZATION;
D O I
10.1016/j.energy.2023.126723
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy security is recognized as one of the most significant issues that countries are keen on liberating them-selves from for stable economies and clean environments. Such concerns can only be eliminated by relying more on renewables, such as solar and wind energies. This study proposes a novel integrated solar and wind-driven energy system for a sustainable community, potentially in Antigua and Barbuda. The current system is devel-oped to provide the community with electrical energy and freshwater from renewable resources rather than the presently operating imported heavy fuel oil-based energy supply. Excess power is stored mechanically via compressed air energy storage (CAES) system using underwater balloons as storage medium to minimize the use of valuable onshore land for such an island nation. The waste heat occurring from the air compression is captured and used in an Organic Rankine Cycle (ORC), operating with isobutane working fluid, to minimize losses while increasing the system effectiveness. Both energetic and exergetic efficiencies of the proposed system are also evaluated comparatively through thermodynamic techniques. The parametric studies are then conducted to further evaluate the system performance under various operating conditions. The system provides 365 GWh of electrical energy on an annual basis. In addition, the current multistage seawater desalination unit is designed to produce a total of 376 tons of fresh water. The system is potentially capable of fueling 168 in-city pneumatic vehicles daily. The overall energetic and exergetic efficiencies of the integrated system are evaluated and found to be 62.8% and 48.5%, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Compressed Air Energy Storage Installation for Renewable Energy Generation
    Borzea, Claudia
    Vladuca, Iulian
    Ionescu, Dan
    Petrescu, Valentin
    Niculescu, Filip
    Nechifor, Cristian
    Vataselu, Gabriel
    Hanek, Mihai
    8TH INTERNATIONAL CONFERENCE ON THERMAL EQUIPMENT, RENEWABLE ENERGY AND RURAL DEVELOPMENT (TE-RE-RD 2019), 2019, 112
  • [2] Development of a new integrated energy system with compressed air and heat storage options
    Karapekmez, Aras
    Dincer, Ibrahim
    Javani, Nader
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [3] DESIGN REQUIREMENT OF A RENEWABLE ENERGY PLUS COMPRESSED AIR ENERGY STORAGE AND REGENERATION SYSTEM
    Finnigan, Tim
    Roddier, Dominique
    PROCEEDINGS OF THE ASME 34TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2015, VOL 9, 2015,
  • [4] Optimization method for a class of integrated energy system with compressed air energy storage
    Men, Jiakai
    Qiu, Jianlong
    Chen, Xiangyong
    Wang, Zhipeng
    Yao, Xiurong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6868 - 6872
  • [5] A new compressed air energy storage refrigeration system
    Wang, Shenglong
    Chen, Guangming
    Fang, Ming
    Wang, Qin
    ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (18-19) : 3408 - 3416
  • [6] Research Progress on Compressed Air Energy Storage Coupled With Renewable Energy
    Sun X.
    Gui Z.
    Zhang X.
    Li Y.
    Li X.
    Xu Y.
    Wang W.
    Zhou J.
    Chen H.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (23): : 9224 - 9241
  • [7] The dynamics of integrated compressed air renewable energy systems
    Garvey, Seamus D.
    RENEWABLE ENERGY, 2012, 39 (01) : 271 - 292
  • [8] Compressed air energy storage system
    Saruta, Hiroki
    Sato, Takashi
    Nakamichi, Ryo
    Toshima, Masatake
    Kubo, Yohei
    R and D: Research and Development Kobe Steel Engineering Reports, 2020, 70 (01): : 42 - 46
  • [9] Compressed air energy storage in integrated energy systems: A review
    Bazdar, Elaheh
    Sameti, Mohammad
    Nasiri, Fuzhan
    Haghighat, Fariborz
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [10] Optimal dispatching of an energy system with integrated compressed air energy storage and demand response
    Yang, Dechang
    Wang, Ming
    Yang, Ruiqi
    Zheng, Yingying
    Pandzic, Hrvoje
    ENERGY, 2021, 234