Inherent Stochasticity of Ovonic Threshold Switch for Neuronal Dropout of Edge-AI Hardware

被引:1
|
作者
Kim, Dongmin [1 ,2 ]
Choi, Wooseok [1 ,2 ]
Lee, Jangseop [1 ,2 ]
Hwang, Hyunsang [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol, Ctr Single Atom Based Semicond Device, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Dropout; hardware neural network; ovonic threshold switching (OTS); resistive array; stochastic;
D O I
10.1109/LED.2023.3289289
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For efficient training of embedded Edge-AI, we demonstrate a compact neuronal dropout by exploiting the inherent stochasticity of a highly scalable ovonic threshold switch (OTS). To implement reliable probabilistic operations, the random nature of OTS is intensively investigated, and a pre-set pulse scheme is presented. We verify successful dropout implementation by a mere 1T3R structure that controls the probability without requiring external circuits. Experimental results reveal its potential for edge applications (i.e., arrhythmia detection) by improving accuracies (up to 11.4 %) with limited training data (100 signals).
引用
收藏
页码:1372 / 1375
页数:4
相关论文
共 6 条
  • [1] Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI
    Xiao, Chao
    Chen, Jihua
    Wang, Lei
    SENSORS, 2022, 22 (19)
  • [2] Effect of Stochastic Resonance on Classification Accuracy of Neural Networks Utilizing Inherent Stochasticity in Threshold Voltage of Ovonic Threshold Switching Device
    Choi, Wooseok
    Kwak, Myonghoon
    Lee, Donguk
    Lee, Sangmin
    Lee, Chuljun
    Kim, Seyoung
    Hwang, Hyunsang
    IEEE Journal of the Electron Devices Society, 2022, 10 : 666 - 669
  • [3] Effect of Stochastic Resonance on Classification Accuracy of Neural Networks Utilizing Inherent Stochasticity in Threshold Voltage of Ovonic Threshold Switching Device
    Choi, Wooseok
    Kwak, Myonghoon
    Lee, Donguk
    Lee, Sangmin
    Lee, Chuljun
    Kim, Seyoung
    Hwang, Hyunsang
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2022, 10 : 666 - 669
  • [4] Efficient Edge-AI Models for Robust ECG Abnormality Detection on Resource-Constrained Hardware
    Huang, Zhaojing
    Contreras, Luis Fernando Herbozo
    Leung, Wing Hang
    Yu, Leping
    Truong, Nhan Duy
    Nikpour, Armin
    Kavehei, Omid
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2024, 17 (04) : 879 - 892
  • [5] Hardware Deployable Edge-AI Solution for Prescreening of Oral Tongue Lesions Using TinyML on Embedded Devices
    Shamim, Mohammed Zubair M.
    IEEE EMBEDDED SYSTEMS LETTERS, 2022, 14 (04) : 183 - 186
  • [6] Hardware Neural Network using Hybrid Synapses via Transfer Learning: WOx Nano-Resistors and TiOx RRAM Synapse for Energy-Efficient Edge-AI Sensor
    Choi, Wooseok
    Kwak, Myonghoon
    Heo, Seongjae
    Lee, Kyumin
    Lee, Seungwoo
    Hwang, Hyunsang
    2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,