Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities

被引:3
|
作者
Hlavacek, Antonin [1 ]
Uhrova, Katercina [1 ]
Weisova, Julie [1 ]
Krcivankova, Jana [1 ]
机构
[1] Czech Acad Sci, Inst Analyt Chem, Veveri 97, Brno 60200, Czech Republic
关键词
CROSS-CORRELATION SPECTROSCOPY; FLUORESCENCE CORRELATION SPECTROSCOPY; LINKED IMMUNOSORBENT-ASSAY; UP-CONVERSION; NANOPARTICLES; MICROSCOPY;
D O I
10.1021/acs.analchem.3c01043
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Massively parallelspectroscopy (MPS) of many single nanoparticlesin an aqueous dispersion is reported. As a model system, bioconjugatedphoton-upconversion nanoparticles (UCNPs) with a near-infrared excitationare prepared. The UCNPs are doped either with Tm3+ (emission450 and 802 nm) or Er3+ (emission 554 and 660 nm). TheseUCNPs are conjugated to biotinylated bovine serum albumin (Tm3+-doped) or streptavidin (Er3+-doped). MPS is correlatedwith an ensemble spectra measurement, and the limit of detection (1.6fmol L-1) and the linearity range (4.8 fmol L-1 to 40 pmol L-1) for bioconjugatedUCNPs are estimated. MPS is used for observing the bioaffinity clusteringof bioconjugated UCNPs. This observation is correlated with a nativeelectrophoresis and bioaffinity assay on a microtiter plate. A competitiveMPS bioaffinity assay for biotin is developed and characterized witha limit of detection of 6.6 nmol L-1. MPS from complexbiological matrices (cell cultivation medium) is performed withoutincreasing background. The compatibility with polydimethylsiloxanemicrofluidics is proven by recording MPS from a 30 & mu;m deep microfluidicchannel.
引用
收藏
页码:12256 / 12263
页数:8
相关论文
共 50 条
  • [1] Artificial intelligence-aided colonoscopy in 10 years
    Mohan, Babu P.
    GASTROINTESTINAL ENDOSCOPY, 2024, 99 (03) : 452 - 453
  • [2] Artificial intelligence-aided nanoplasmonic biosensor modeling
    Hamedi, Samaneh
    Jahromi, Hamed Dehdashti
    Lotfiani, Ahmad
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [3] Massively parallel artificial intelligence
    Kitano, Hiroaki
    Hendler, James
    Higuchi, Tetsuya
    Moldovan, Dan
    Waltz, David
    IJCAI, Proceedings of the International Joint Conference on Artificial Intelligence, 1600, 1
  • [4] Artificial Intelligence-Aided Endoscopy and Colorectal Cancer Screening
    Spadaccini, Marco
    Massimi, Davide
    Mori, Yuichi
    Alfarone, Ludovico
    Fugazza, Alessandro
    Maselli, Roberta
    Sharma, Prateek
    Facciorusso, Antonio
    Hassan, Cesare
    Repici, Alessandro
    DIAGNOSTICS, 2023, 13 (06)
  • [5] Artificial intelligence-aided diagnosis and treatment in the field of optometry
    Du, Hua-Qing
    Dai, Qi
    Zhang, Zu-Hui
    Wang, Chen-Chen
    Zhai, Jing
    Yang, Wei-Hua
    Zhu, Tie-Pei
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2023, 16 (09) : 1406 - 1416
  • [6] Artificial intelligence-aided optical imaging for cancer theranostics
    Xu, Mengze
    Chen, Zhiyi
    Zheng, Junxiao
    Zhao, Qi
    Yuan, Zhen
    SEMINARS IN CANCER BIOLOGY, 2023, 94 : 62 - 80
  • [7] Artificial Intelligence-Aided Colonoscopy in a Real World Setting
    Anand, Jayati
    Gandhi, Shiv
    Patel, Krunal
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2023, 118 (10): : S260 - S260
  • [8] Trust and Transparency in Artificial Intelligence-Aided Immunosuppression Decisions
    Clement, J.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2020, 20 : 441 - 441
  • [9] Artificial Intelligence-Aided Automated Detection of Railroad Trespassing
    Zaman, Asim
    Ren, Baozhang
    Liu, Xiang
    TRANSPORTATION RESEARCH RECORD, 2019, 2673 (07) : 25 - 37
  • [10] Artificial intelligence-aided ultrasound in renal diseases: a systematic review
    Liang, Xiaowen
    Du, Meng
    Chen, Zhiyi
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (06) : 3988 - 4001