Parameter inference with non-linear galaxy clustering: accounting for theoretical uncertainties

被引:0
|
作者
Knabenhans, Mischa [1 ]
Brinckmann, Thejs [2 ,3 ,4 ,5 ]
Stadel, Joachim [1 ]
Schneider, Aurel [1 ]
Teyssier, Romain [1 ,6 ,7 ]
机构
[1] Univ Zurich, Inst Computat Sci, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Giuseppe Saragat 1, I-44122 Ferrara, Italy
[3] Ist Nazl Fis Nucl INFN, Sez Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara, Italy
[4] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[6] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[7] Princeton Univ, Program Appl & Computat Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
基金
瑞士国家科学基金会;
关键词
methods: numerical; methods: statistical; cosmological parameters; large-scale structure of Universe; COSMOLOGICAL POWER SPECTRA; BACCO SIMULATION PROJECT; ACCURATE HALO-MODEL; DARK ENERGY; MASSIVE NEUTRINOS; MATTER; EMULATION;
D O I
10.1093/mnras/stac1671
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We implement EUCLIDEMULATOR (version 1), an emulator for the non-linear correction of the matter power spectrum, into the Markov chain Monte Carlo forecasting code MONTEPYTHON. We compare the performance of HALOFIT, HMCODE, and EUCLIDEMULATOR1, both at the level of power spectrum prediction and at the level of posterior probability distributions of the cosmological parameters, for different cosmological models and different galaxy power spectrum wavenumber cut-offs. We confirm that the choice of the power spectrum predictor has a non-negligible effect on the computed sensitivities when doing cosmological parameter forecasting, even for a conservative wavenumber cut-off of 0.2 h Mpc(-1). We find that EUCLIDEMULATOR 1 is on average up to 17 per cent more sensitive to the cosmological parameters than the other two codes, with the most significant improvements being for the Hubble parameter of up to 42 per cent and the equation of state of dark energy of up to 26 per cent, depending on the case. In addition, we point out that the choice of the power spectrum predictor contributes to the risk of computing a significantly biased mean cosmology when doing parameter estimations. For the four tested scenarios we find biases, averaged over the cosmological parameters, of between 0 .5 sigma and 2 sigma (from below to 1 sigma up to 6 sigma for individual parameters). This paper provides a proof of concept that this risk can be mitigated by taking a well-tailored theoretical uncertainty into account as this allows to reduce the bias by a factor of 2 to 5, depending on the case under consideration, while keeping posterior credibility contours small: the standard deviations are amplified by a factor of <= 1.4 in all cases.
引用
收藏
页码:1859 / 1879
页数:21
相关论文
共 50 条
  • [1] ACCOUNTING FOR INTRINSIC NONLINEARITY IN NON-LINEAR REGRESSION PARAMETER INFERENCE REGIONS
    HAMILTON, DC
    WATTS, DG
    BATES, DM
    ANNALS OF STATISTICS, 1982, 10 (02): : 386 - 393
  • [2] On the dynamic response of non-linear systems with parameter uncertainties
    Iwan, WD
    Huang, CT
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (05) : 631 - 645
  • [3] On the dynamic response of non-linear systems with parameter uncertainties
    California Inst of Technology, Pasadena, United States
    Int J Non Linear Mech, 5 (631-645):
  • [4] Assessing non-linear models for galaxy clustering III: theoretical accuracy for stage IV surveys
    Bose, Benjamin
    Koyama, Kazuya
    Winther, Hans A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (10):
  • [5] Emulating galaxy clustering and galaxy-galaxy lensing into the deeply non-linear regime: methodology, information, and forecasts
    Wibking, Benjamin D.
    Salcedo, Andres N.
    Weinberg, David H.
    Garrison, Lehman H.
    Ferrer, Douglas
    Tinker, Jeremy
    Eisenstein, Daniel
    Metchnik, Marc
    Pinto, Philip
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (01) : 989 - 1006
  • [6] Modelling non-linear redshift-space distortions in the galaxy clustering pattern: systematic errors on the growth rate parameter
    de la Torre, Sylvain
    Guzzo, Luigi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (01) : 327 - 342
  • [7] Exploiting non-linear scales in galaxy-galaxy lensing and galaxy clustering: A forecast for the dark energy survey
    Salcedo, Andres N.
    Weinberg, David H.
    Wu, Hao-Yi
    Wibking, Benjamin D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (04) : 5376 - 5391
  • [8] Non-linear matter power spectrum covariance matrix errors and cosmological parameter uncertainties
    Blot, L.
    Corasaniti, P. S.
    Amendola, L.
    Kitching, T. D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (04) : 4462 - 4470
  • [9] Non-Linear Clustering of Distribution Feeders
    Ramos-Leanos, Octavio
    Jneid, Jneid
    Fazio, Bruno
    ENERGIES, 2022, 15 (21)
  • [10] Non-linear dark energy clustering
    Anselmi, Stefano
    Ballesteros, Guillermo
    Pietroni, Massimo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (11):