Mapping Agricultural Land in Afghanistan's Opium Provinces Using a Generalised Deep Learning Model and Medium Resolution Satellite Imagery

被引:0
|
作者
Simms, Daniel M. [1 ]
Hamer, Alex M. [1 ]
Zeiler, Irmgard [2 ]
Vita, Lorenzo [2 ]
Waine, Toby W. [1 ]
机构
[1] Cranfield Univ, Appl Remote Sensing Grp, Cranfield MK43 0AL, Beds, England
[2] Vienna Int Ctr, United Nations Off Drugs & Crime, A-1400 Vienna A, Austria
关键词
deep learning; agriculture; opium; land use classification; generalised model; RADIOMETRIC NORMALIZATION; CNN;
D O I
10.3390/rs15194714
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding the relationship between land use and opium production is critical for monitoring the dynamics of poppy cultivation and developing an effective counter narcotics policy in Afghanistan. However, mapping agricultural land accurately and rapidly is challenging, as current methods require resource-intensive and time consuming manual image-interpretation. Deep convolutional neural nets have been shown to greatly reduce the manual effort in mapping agriculture from satellite imagery but require large amounts of densely labelled training data for model training. Here we develop a generalised model using past images and labels from different medium resolution satellite sensors for fully automatic agricultural land classification using the latest medium resolution satellite imagery. The model (FCN-8) is first trained on Disaster Monitoring Constellation (DMC) satellite images from 2007 to 2009. The effect of shape, texture and spectral features on model performance are investigated along with normalisation in order to standardise input medium resolution imagery from DMC, Landsat-5, Landsat-8, and Sentinel-2 for transfer learning between sensors and across years. Textural features make the highest contribution to overall accuracy (similar to 73%) while the effect of shape is minimal. The model accuracy on new images, with no additional training, is comparable to visual image interpretation (overall > 95%, user accuracy > 91%, producer accuracy > 85%, and frequency weighted intersection over union > 67%). The model is robust and was used to map agriculture from archive images (1990) and can be used in other areas with similar landscapes. The model can be updated by fine tuning using smaller, sparsely labelled datasets in the future. The generalised model was used to map the change in agricultural area in Helmand Province, showing the expansion of agricultural land into former desert areas. Training generalised deep learning models using data from both new and long-term EO programmes, with little or no requirement for fine tuning, is an exciting opportunity for automating image classification across datasets and through time that can improve our understanding of the environment.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] MAPPING SLUMS FROM SATELLITE IMAGERY USING DEEP LEARNING
    Raj, Anjali
    Agrawal, Shubham
    Mitra, Adway
    Sinha, Manjira
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6584 - 6587
  • [2] Deep Learning in the Mapping of Agricultural Land Use Using Sentinel-2 Satellite Data
    Singh, Gurwinder
    Singh, Sartajvir
    Sethi, Ganesh
    Sood, Vishakha
    GEOGRAPHIES, 2022, 2 (04): : 691 - 700
  • [3] A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery
    Alhassan, Victor
    Henry, Christopher
    Ramanna, Sheela
    Storie, Christopher
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12): : 8529 - 8544
  • [4] A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery
    Victor Alhassan
    Christopher Henry
    Sheela Ramanna
    Christopher Storie
    Neural Computing and Applications, 2020, 32 : 8529 - 8544
  • [5] DEEP LEARNING MODEL FOR WATER/ICE/LAND CLASSIFICATION USING LARGE-CALE MEDIUM RESOLUTION SATELLITE IMAGES
    Poliyapram, Vinayaraj
    Imamoglu, Nevrez
    Nakamura, Ryousuke
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3884 - 3887
  • [6] Satellite Imagery Super Resolution Using Classical and Deep Learning Algorithms
    Kuchkorov, T. A.
    Djumanov, J. X.
    Ochilov, T. D.
    Sabitova, N. Q.
    INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2023, PT II, 2024, 14532 : 70 - 80
  • [7] Land Cover Classification at the Wildland Urban Interface using High-Resolution Satellite Imagery and Deep Learning
    Nguyen, Mai H.
    Block, Jessica
    Crawl, Daniel
    Siu, Vincent
    Bhatnagar, Akshit
    Rodriguez, Federico
    Kwan, Alison
    Baru, Namrita
    Altintas, Ilkay
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1632 - 1638
  • [8] Glacial Lakes Mapping Using Multi Satellite PlanetScope Imagery and Deep Learning
    Qayyum, Nida
    Ghuffar, Sajid
    Ahmad, Hafiz Mughees
    Yousaf, Adeel
    Shahid, Imran
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [9] Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery
    Zhang, Pengbin
    Ke, Yinghai
    Zhang, Zhenxin
    Wang, Mingli
    Li, Peng
    Zhang, Shuangyue
    SENSORS, 2018, 18 (11)
  • [10] Detection and mapping of artillery craters with very high spatial resolution satellite imagery and deep learning
    Duncan, Erik C.
    Skakun, Sergii
    Kariryaa, Ankit
    Prishchepov, Alexander, V
    SCIENCE OF REMOTE SENSING, 2023, 7