Experimental Study on Mechanical Properties of Basalt Fiber Concrete after Cryogenic Freeze-Thaw Cycles

被引:9
|
作者
Li, Yang [1 ]
Gu, Zhicong [1 ]
Zhao, Ben [1 ]
Zhang, Jiangkun [2 ]
Zou, Xu [1 ]
机构
[1] Hubei Univ Technol, Dept Civil Engn, Wuhan 430068, Peoples R China
[2] Univ Padua, Dept Civil Engn, Via F Marzolo 9, I-35131 Padua, Italy
基金
中国国家自然科学基金;
关键词
basalt fiber; cryogenic cycles; compressive strength; toughness; splitting tensile strength; REINFORCED-CONCRETE; RECYCLED AGGREGATE; BEHAVIOR; STEEL;
D O I
10.3390/polym15010196
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Basalt fiber (BF) has received much attention in recent years for engineering practice and scientific research related to basalt fiber reinforced concrete (BFRC) due to its advantageous mechanical properties and cost-effectiveness. By researching its performance characteristics after cryogenic freeze-thaw cycles, the advantages of BFRC's mechanical properties can be further exploited in order to expand its application scope. The effects of the fiber volume fraction, temperature gradient, and number of freeze-thaw cycles on the compressive strength, toughness index, splitting tensile strength, flexural strength, etc., of BFRC were investigated. Additionally, the damage mechanism of BFRC after freeze-thaw cycles was analyzed via scanning electron microscopy (SEM). The results show that the compressive strength of BFRC reaches its peak value when the fraction reaches 0.1% under the conditions of freezing and thawing cycles from room temperature to -80 degrees C. When the fraction of BFRC is 0.1%, and the maximum reduction is 17.1%, the splitting tensile strength decreased most sharply when the fraction was 0.1%, and the decrease amplitude was 40.9%, and the flexural strength decreased most acutely when the fraction was 0.3%, and the maximum decrease was 44.62%. The addition of basalt fibers can reduce the damage to the microstructure of concrete and improve its plastic degradation characteristics to a certain extent. With a decrease in the minimum temperature of the cryogenic freeze-thaw cycle, the optimal fiber content for compressive strength increases. Nevertheless, the splitting tensile strength and flexural strength of BFRC is improved as the fiber content increases under the cryogenic freeze-thaw environment.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Study on resistance of basalt fiber reinforced concrete to sulfate erosion after cryogenic freeze-thaw cycles
    Li, Yang
    Ye, Lingfeng
    Gu, Zhicong
    Liu, Yaodong
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [2] Fracture Properties of Basalt Fiber Reinforced Concrete after Freeze-Thaw Cycles
    Zhao Y.
    Song B.
    Wang L.
    Han X.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2019, 22 (04): : 575 - 583
  • [3] Experimental study on mechanical properties of recycled concrete after freeze-thaw cycles
    Wang C.
    Liu L.
    Cao F.
    Lu L.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2020, 41 (12): : 193 - 202
  • [4] Experimental study on mechanical properties of alkali activated concrete after freeze-thaw cycles
    Wang, Yuhua
    Chen, Shuai
    Tang, Congrong
    Yu, Yong
    AIP ADVANCES, 2024, 14 (06)
  • [5] Experimental study on the dynamic mechanical properties of concrete under freeze-thaw cycles
    Han, Nv
    Tian, Wei
    STRUCTURAL CONCRETE, 2018, 19 (05) : 1353 - 1362
  • [6] Mechanical Properties and Freeze-Thaw Durability of Basalt Fiber Reactive Powder Concrete
    Li, Wenjun
    Liu, Hanbing
    Zhu, Bing
    Lyu, Xiang
    Gao, Xin
    Liang, Chunyu
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [7] Synergistic effects of polypropylene fiber and basalt fiber on the mechanical properties of concrete incorporating fly ash ceramsite after freeze-thaw cycles
    Wang, Yifan
    Zhang, Jicheng
    Du, Guofeng
    Li, Yuanqi
    JOURNAL OF BUILDING ENGINEERING, 2024, 91
  • [8] Experimental study on damage of polypropylene fiber concrete in freeze-thaw cycles
    Cheng, Hongqiang
    Gao, Danying
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2010, 40 (SUPPL. 2): : 197 - 200
  • [9] The Effect of Freeze-Thaw Cycles on Mechanical Properties of Concrete
    Song, Wali
    Li, Xuefang
    Ma, Kefei
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 3429 - 3432
  • [10] Dynamic Mechanical Properties of PVA Fiber-Reinforced Concrete after Freeze-Thaw Cycles
    Zhang, Bing
    Liu, Jun
    Jiang, Ting
    Yang, Yuanquan
    JOURNAL OF TESTING AND EVALUATION, 2024,