Which methods perform better for real-time Hurst parameter estimation?

被引:0
|
作者
Chen, Daniel [1 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci & Business Adm, Management Entrepreneurship & Technol MET, Berkeley, CA 94720 USA
关键词
Hurst estimation; signal modeling; variability quantification; FRACTIONAL GAUSSIAN-NOISE;
D O I
10.1109/ICCMA59762.2023.10374691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Long-range dependence (LRD) in complex time series is becoming an increasingly important aspect in the era of big data as we explore further into the complex world. From natural processes like heart rate variability (HRV) or man-made systems like the stock market, LRD is omnipresent. As such, accurately characterizing the LRD in terms of the Hurst parameter in these complex time series generated from complex systems is important. Most existing methods for Hurst parameter estimation are for batch or offline processing. To achieve real-time evaluation, a moving window approach is applied when quantifying the LRD in the time series. This paper focuses on evaluating various techniques that estimate the Hurst parameter embedded in the LRD time series. Nine techniques were analyzed, and three were determined to be the most accurate: Higuchi's method, Diffusion Entropy Analysis, and Detrended Fluctuation Analysis for online real-time estimation of Hurst parameters. All reported results are reproducible for further robustness evaluation of online real-time Hurst parameter estimation.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 50 条
  • [1] Fast real-time Hurst parameter estimation via adaptive wavelet lifting
    Guo, D
    Wang, XD
    Zhang, JS
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2004, 53 (04) : 1266 - 1273
  • [2] Real-Time Estimation of Parameter Maps
    Gentsch, Maik
    King, Rudibert
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 2391 - 2396
  • [3] Real-time modal parameter estimation using subspace methods: Theory
    Tasker, F
    Bosse, A
    Fisher, S
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1998, 12 (06) : 797 - 808
  • [4] Real-time modal parameter estimation using subspace methods: Applications
    Bosse, A
    Tasker, F
    Fisher, S
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1998, 12 (06) : 809 - 823
  • [5] Software Implementation of Real-time Hurst Parameter Estimator Algorithm with Filter Banks
    Grabs, Elans
    Petersons, Ernests
    [J]. 2015 ADVANCES IN WIRELESS AND OPTICAL COMMUNICATIONS (RTUWO), 2015, : 77 - 81
  • [6] Real-time parameter estimation in the frequency domain
    Morelli, EA
    [J]. AIAA GUIDANCE, NAVIGATION, AND CONTROL CONFERENCE, VOLS 1-3: A COLLECTION OF TECHNICAL PAPERS, 1999, : 477 - 487
  • [7] Real-time parameter estimation in the frequency domain
    Morelli, EA
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (05) : 812 - 818
  • [8] Real-time vehicle dynamics parameter estimation
    Shin, Kwang-Keun
    [J]. Proceedings of the ASME Dynamic Systems and Control Division 2005, Pts A and B, 2005, : 313 - 318
  • [9] Real-time parameter estimation of a MIMO system
    Kaplanoglu, Erkan
    Safak, Koray K.
    Varol, H. Selcuk
    [J]. IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 1287 - 1291
  • [10] A proposal for real time hurst parameter derivation
    Department of Computer Science and Engineering, Akita University, 1-1, Tegata Gakuen-chou, Akita-City, Akita 010-8502, Japan
    不详
    不详
    不详
    不详
    不详
    [J]. IEEJ Trans. Electron. Inf. Syst., 2007, 6 (968-969):