A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches

被引:84
|
作者
Uddin, Md Galal [1 ,2 ,3 ]
Nash, Stephen [1 ,2 ,3 ]
Rahman, Azizur [4 ,5 ]
Olbert, Agnieszka I. [1 ,2 ,3 ]
机构
[1] Univ Galway, Coll Sci & Engn, Sch Engn, Civil Engn, Galway, Ireland
[2] Univ Galway, Ryan Inst, Galway, Ireland
[3] Univ Galway, MaREI Res Ctr, Galway, Ireland
[4] Charles Sturt Univ, Sch Comp Math & Engn, Wagga Wagga, Australia
[5] Charles Sturt Univ, Gulbali Inst Agr Water & Environm, Wagga Wagga, Australia
关键词
Water quality index; Gaussian processes regression; Monte Carlo simulation; Uncertainty; Cork harbour; RIVERS;
D O I
10.1016/j.watres.2022.119422
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the significant increase in WQI applications worldwide and lack of specific application guidelines, accuracy and reliability of WQI models is a major issue. It has been reported that WQI models produce significant uncertainties during the various stages of their application including: (i) water quality indicator selection, (ii) subindex (SI) calculation, (iii) water quality indicator weighting and (iv) aggregation of sub-indices to calculate the overall index. This research provides a robust statistically sound methodology for assessment of WQI model uncertainties. Eight WQI models are considered. The Monte Carlo simulation (MCS) technique was applied to estimate model uncertainty, while the Gaussian Process Regression (GPR) algorithm was utilised to predict uncertainties in the WQI models at each sampling site. The sub-index functions were found to contribute to considerable uncertainty and hence affect the model reliability - they contributed 12.86% and 10.27% of uncertainty for summer and winter applications, respectively. Therefore, the selection of sub-index function needs to be made with care. A low uncertainty of less than 1% was produced by the water quality indicator selection and weighting processes. Significant statistical differences were found between various aggregation functions. The weighted quadratic mean (WQM) function was found to provide a plausible assessment of water quality of coastal waters at reduced uncertainty levels. The findings of this study also suggest that the unweighted root means squared (RMS) aggregation function could be potentially also used for assessment of coastal water quality. Findings from this research could inform a range of stakeholders including decision-makers, researchers, and agencies responsible for water quality monitoring, assessment and management.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A new machine learning model for predicting the water quality index
    Ghanbari-Adivi, Elham
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (04) : 5635 - 5667
  • [2] Predicting Aquaculture Water Quality Using Machine Learning Approaches
    Li, Tingting
    Lu, Jian
    Wu, Jun
    Zhang, Zhenhua
    Chen, Liwei
    [J]. WATER, 2022, 14 (18)
  • [3] Performance analysis of the water quality index model for predicting water state using machine learning techniques
    Uddin, Md Galal
    Nash, Stephen
    Rahman, Azizur
    Olbert, Agnieszka I.
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 169 : 808 - 828
  • [4] EVALUATING THE PERFORMANCE OF MACHINE LEARNING APPROACHES IN PREDICTING ALBANIAN SHKUMBINI RIVER'S WATERS USING WATER QUALITY INDEX MODEL
    Basha, Lule
    Shyti, Bederiana
    Bekteshi, Lirim
    [J]. JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT, 2024, 32 (02) : 117 - 127
  • [5] Optimization of water quality index models using machine learning approaches
    Ding, Fei
    Zhang, Wenjie
    Cao, Shaohua
    Hao, Shilong
    Chen, Liangyao
    Xie, Xin
    Li, Wenpan
    Jiang, Mingcen
    [J]. WATER RESEARCH, 2023, 243
  • [6] Synthetically predicting the quality index of sinter using machine learning model
    Liu Song
    Lyu Qing
    Liu Xiaojie
    Sun Yanqin
    [J]. IRONMAKING & STEELMAKING, 2020, 47 (07) : 828 - 836
  • [7] Machine Learning Algorithms for Predicting the Water Quality Index
    Hussein, Enas E.
    Baloch, Muhammad Yousuf Jat
    Nigar, Anam
    Abualkhair, Hussain F.
    Aldawood, Faisal Khaled
    Tageldin, Elsayed
    [J]. WATER, 2023, 15 (20)
  • [8] Machine Learning Approach for Predicting Air Quality Index
    Kekulanadara, K. M. O. V. K.
    Kumara, B. T. G. S.
    Kuhaneswaran, Banujan
    [J]. 2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [9] Estimating RANS model uncertainty using machine learning
    Heyse, Jan F.
    Mishra, Aashwin A.
    Iaccarino, Gianluca
    [J]. JOURNAL OF THE GLOBAL POWER AND PROPULSION SOCIETY, 2021,
  • [10] Predicting and Analyzing Water Quality using Machine Learning: A Comprehensive Model
    Khan, Yafra
    See, Chai Soo
    [J]. 2016 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2016,