Ecological Dynamics of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa

被引:2
|
作者
Morimoto, Daichi [1 ]
Yoshida, Naohiro [1 ]
Sasaki, Aya [1 ]
Nakagawa, Satoshi [1 ]
Sako, Yoshihiko [1 ]
Yoshida, Takashi [1 ]
机构
[1] Kyoto Univ, Grad Sch Agr, Kyoto, Japan
基金
日本学术振兴会;
关键词
Microcystis aeruginosa; cyanophages; real-time PCR; amplicon sequencing; internal transcribed spacers; cyanobacterial bloom; CYANOPHAGE; ALIGNMENT; GENOMICS; DIVERSIFICATION; MAMMALS; CRISPR; GENE;
D O I
10.1128/aem.02111-22
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microcystis aeruginosa is predicted to interact and coexist with diverse broad- and narrow-host-range viruses within a bloom; however, little is known about their affects on Microcystis population dynamics. Here, we developed a real-time PCR assay for the quantification of these viruses that have different host ranges. During the sampling period, total Microcystis abundance showed two peaks in May and August with a temporary decrease in June. The Microcystis population is largely divided into three phylotypes based on internal transcribed sequences (ITS; ITS types I to III). ITS I was the dominant phylotype (66% to 88%) except in June. Although the ITS II and III phylotypes were mostly less abundant, these phylotypes temporarily increased to approximately equivalent abundances of the ITS I population in June. During the same sampling period, the abundances of the broad-host-range virus MVGF_NODE331 increased from April to May and from July to October with a temporary decrease in June, in which its dynamics were in proportion to the increase of total Microcystis abundances regardless of changes in host ITS population composition. In contrast, the narrow-host-range viruses MVG_NODE620 and Ma-LMM01 were considerably less abundant than the broad-host-range virus and generally did not fluctuate in the environment. Considering that M. aeruginosa could increase the abundance and sustain the bloom under the prevalence of the broad-host-range virus, host abundant and diverse antiviral mechanisms might contribute to coexistence with its viruses.IMPORTANCE The bloom-forming toxic cyanobacterium Microcystis aeruginosa interacts with diverse broad- and narrow-host-range viruses. However, the dynamics of the Microcystis population (at the intraspecies level) and viruses with different host ranges remain unknown. Our real-time PCR assays unveiled that the broad-host-range virus gradually increased in abundance over the sampling period, in proportion to the increase in total Microcystis abundance regardless of changes in genotypic composition. The narrow-host-range viruses were considerably less abundant than the broad-host-range virus and did not generally fluctuate in the environment. The expansion and maintenance of the Microcystis bloom even under the increased infection by the broad-host-range virus suggested that highly abundant and diverse antiviral mechanisms allowed them to coexist with viruses under selective pressure. This paper expands our knowledge about the ecological dynamics of Microcystis viruses and provides potential insights into their coexistence with their host. The bloom-forming toxic cyanobacterium Microcystis aeruginosa interacts with diverse broad- and narrow-host-range viruses. However, the dynamics of the Microcystis population (at the intraspecies level) and viruses with different host ranges remain unknown.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Cooccurrence of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa
    Morimoto, Daichi
    Tominaga, Kento
    Nishimura, Yosuke
    Yoshida, Naohiro
    Kimura, Shigeko
    Sako, Yoshihiko
    Yoshida, Takashi
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2019, 85 (18)
  • [2] Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater
    Yoshida, Mitsuhiro
    Yoshida, Takashi
    Kashima, Aki
    Takashima, Yukari
    Hosoda, Naohiko
    Nagasaki, Keizo
    Hiroishi, Shingo
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (10) : 3269 - 3273
  • [3] Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843
    Kaneko, Takakazu
    Nakajima, Nobuyoshi
    Okamoto, Shinobu
    Suzuki, Iwane
    Tanabe, Yuuhiko
    Tamaoki, Masanori
    Nakamura, Yasukazu
    Kasai, Fumie
    Watanabe, Akiko
    Kawashima, Kumiko
    Kishida, Yoshie
    Ono, Akiko
    Shimizu, Yoshimi
    Takahashi, Chika
    Minami, Chiharu
    Fujishiro, Tsunakazu
    Kohara, Mitsuyo
    Katoh, Midori
    Nakazaki, Naomi
    Nakayama, Shinobu
    Yamada, Manabu
    Tabatai, Satoshi
    Watanabe, Makoto M.
    DNA RESEARCH, 2007, 14 (06) : 247 - 256
  • [4] Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa
    Sabart, Marion
    Pobel, David
    Latour, Delphine
    Robin, Joel
    Salencon, Marie-J.
    Humbert, Jean-F.
    ENVIRONMENTAL MICROBIOLOGY REPORTS, 2009, 1 (04): : 263 - 272
  • [5] Study of the performance of a bloom-forming cyanobacterium (Microcystis aeruginosa) on the biosorption of uranium
    Yuan, Yijun
    Liao, Xiaoqing
    Fang, Ziyi
    Liu, Nana
    Qiu, Fengfang
    Huang, Dejuan
    Wang, Binliang
    Zhou, Yunyue
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2022, 331 (07) : 3183 - 3194
  • [6] Molecular Response of the Bloom-Forming Cyanobacterium, Microcystis aeruginosa, to Phosphorus Limitation
    Matthew J. Harke
    Dianna L. Berry
    James W. Ammerman
    Christopher J. Gobler
    Microbial Ecology, 2012, 63 : 188 - 198
  • [7] Study of the performance of a bloom-forming cyanobacterium (Microcystis aeruginosa) on the biosorption of uranium
    Yijun Yuan
    Xiaoqing Liao
    Ziyi Fang
    Nana Liu
    Fengfang Qiu
    Dejuan Huang
    Binliang Wang
    Yunyue Zhou
    Journal of Radioanalytical and Nuclear Chemistry, 2022, 331 : 3183 - 3194
  • [8] A Tribute to Disorder in the Genome of the Bloom-Forming Freshwater Cyanobacterium Microcystis aeruginosa
    Humbert, Jean-Francois
    Barbe, Valerie
    Latifi, Amel
    Gugger, Muriel
    Calteau, Alexandra
    Coursin, Therese
    Lajus, Aurelie
    Castelli, Vanina
    Oztas, Sophie
    Samson, Gaelle
    Longin, Cyrille
    Medigue, Claudine
    de Marsac, Nicole Tandeau
    PLOS ONE, 2013, 8 (08):
  • [9] BLOOM-FORMING CYANOBACTERIUM MICROCYSTIS-AERUGINOSA OVERWINTERS ON SEDIMENT SURFACE
    PRESTON, T
    STEWART, WDP
    REYNOLDS, CS
    NATURE, 1980, 288 (5789) : 365 - 367
  • [10] Comparison of heavy metal accumulation by a bloom-forming cyanobacterium,Microcystis aeruginosa
    ZENG Jin 1*
    2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering
    Science Bulletin, 2012, (Z2) : 3790 - 3797