Non-Hermitian Topological Phononic Metamaterials

被引:5
|
作者
Lu, Jiuyang [1 ,2 ]
Deng, Weiyin [1 ,2 ]
Huang, Xueqin [3 ]
Ke, Manzhu [1 ,2 ]
Liu, Zhengyou [1 ,2 ,4 ]
机构
[1] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Guangdong, Peoples R China
[4] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
exceptional point; non-Hermitian; phononic metamaterials; skin effect; topological state; EXCEPTIONAL POINTS; INSULATOR; SYMMETRY; REALIZATION; DEGENERACY; CRYSTALS; REALITY; WAVE;
D O I
10.1002/adma.202307998
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Non-Hermitian (NH) physics describes novel phenomena in open systems that allow generally complex spectra. Introducing NH physics into topological metamaterials, which permits explorations of topological wave phenomena in artificially designed structures, not only enables the experimental verification of exotic NH phenomena in these flexible platforms, but also enriches the manipulation of wave propagation beyond the Hermitian cases. Here, a perspective on the advances in the research of NH topological phononic metamaterials is presented, which covers the exceptional points and their topological geometries, the skin effect related to the topology of complex spectra, the interplay of NH effects and topological states in phononic metamaterials, etc.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Non-Hermitian topological metamaterials with odd elasticity
    Zhou, Di
    Zhang, Junyi
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [2] Hermitian and non-hermitian higher-order topological states in mechanical metamaterials
    Tian, Yuping
    Tan, Zhuhua
    Zhang, Wei
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 106
  • [3] Topological Bands and Triply Degenerate Points in Non-Hermitian Hyperbolic Metamaterials
    Hou, Junpeng
    Li, Zhitong
    Luo, Xi-Wang
    Gu, Qing
    Zhang, Chuanwei
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (07)
  • [4] Hermitian and non-hermitian topological edge states in one-dimensional perturbative elastic metamaterials
    Fan, Haiyan
    Gao, He
    An, Shuowei
    Gu, Zhongming
    Liang, Shanjun
    Zheng, Yi
    Liu, Tuo
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 169
  • [5] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [6] Non-Hermitian topological photonics
    Nasari, Hadiseh
    Pyrialakos, Georgios G.
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    [J]. OPTICAL MATERIALS EXPRESS, 2023, 13 (04): : 870 - 885
  • [7] Non-Hermitian topological ohmmeter
    Koenye, Viktor
    Ochkan, Kyrylo
    Chyzhykova, Anastasiia
    Budich, Jan Carl
    van den Brink, Jeroen
    Fulga, Ion Cosma
    Dufouleur, Joseph
    [J]. PHYSICAL REVIEW APPLIED, 2024, 22 (03):
  • [8] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [9] Non-Hermitian Topological Photonics
    Zhen, Bo
    Zhou, Hengyun
    Peng, Chao
    Yoon, Yoseob
    Hsu, Chia Wei
    Nelson, Keith A.
    Shen, Huitao
    Fu, Liang
    Joannopoulos, John D.
    Soljacic, Marin
    [J]. 2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [10] Controlling Microwaves in Non-Hermitian Metamaterials
    Rao, J. W.
    Zhao, Y. T.
    Gui, Y. S.
    Fan, X. L.
    Xue, D. S.
    Hu, C-M
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (02):