共 50 条
- [1] Denoising Autoencoder Genetic Programming for Real-World Symbolic Regression [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 612 - 614
- [2] Analyzing Optimized Constants in Genetic Programming on a Real-World Regression Problem [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 606 - 607
- [4] Towards Automatic Grammatical Evolution for Real-world Symbolic Regression [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE (IJCCI), 2021, : 68 - 78
- [5] Using Denoising Autoencoder Genetic Programming to Control Exploration and Exploitation in Search [J]. GENETIC PROGRAMMING (EUROGP 2022), 2022, : 102 - 117
- [6] Sequential Symbolic Regression with Genetic Programming [J]. GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
- [7] Compositional Genetic Programming for Symbolic Regression [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
- [8] Symbolic regression via genetic programming [J]. SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
- [9] Statistical genetic programming for symbolic regression [J]. APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
- [10] Taylor Genetic Programming for Symbolic Regression [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954