Rotation Inside Convex Kakeya Sets

被引:0
|
作者
Janzer, Barnabas [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Kakeya set; Besicovitch set; Convex body;
D O I
10.1007/s00454-024-00639-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let K be a convex body (a compact convex set) in R d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>d$$\end{document} , that contains a copy of another body S in every possible orientation. Is it always possible to continuously move any one copy of S into another, inside K? As a stronger question, is it always possible to continuously select, for each orientation, one copy of S in that orientation? These questions were asked by Croft. We show that, in two dimensions, the stronger question always has an affirmative answer. We also show that in three dimensions the answer is negative, even for the case when S is a line segment - but that in any dimension the first question has a positive answer when S is a line segment. And we prove that, surprisingly, the answer to the first question is negative in dimensions four and higher for general S.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Kakeya sets of curves
    Wisewell, L
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (06) : 1319 - 1362
  • [2] Minimal Kakeya Sets
    Dover, Jeremy M.
    Mellinger, Keith E.
    Scott, Kelly E.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (02) : 95 - 104
  • [3] Kakeya sets of curves
    L. Wisewell
    [J]. Geometric & Functional Analysis GAFA, 2005, 15 : 1319 - 1362
  • [4] A Generalization of the Convex Kakeya Problem
    Hee-Kap Ahn
    Sang Won Bae
    Otfried Cheong
    Joachim Gudmundsson
    Takeshi Tokuyama
    Antoine Vigneron
    [J]. Algorithmica, 2014, 70 : 152 - 170
  • [5] A Generalization of the Convex Kakeya Problem
    Ahn, Hee-Kap
    Bae, Sang Won
    Cheong, Otfried
    Gudmundsson, Joachim
    Tokuyama, Takeshi
    Vigneron, Antoine
    [J]. LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 1 - 12
  • [6] A Generalization of the Convex Kakeya Problem
    Ahn, Hee-Kap
    Bae, Sang Won
    Cheong, Otfried
    Gudmundsson, Joachim
    Tokuyama, Takeshi
    Vigneron, Antoine
    [J]. ALGORITHMICA, 2014, 70 (02) : 152 - 170
  • [7] Continuous rotation invariant valuations on convex sets
    Alesker, S
    [J]. ANNALS OF MATHEMATICS, 1999, 149 (03) : 977 - 1005
  • [8] On Kakeya Conditions for Achievement Sets
    Marchwicki, Jacek
    Miska, Piotr
    [J]. RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [9] CLOSED SETS WITH THE KAKEYA PROPERTY
    Csornyei, M.
    Hera, K.
    Laczkovich, M.
    [J]. MATHEMATIKA, 2017, 63 (01) : 184 - 195
  • [10] A note on large Kakeya sets
    De Boeck, Maarten
    Van de Voorde, Geertrui
    [J]. ADVANCES IN GEOMETRY, 2021, 21 (03) : 401 - 405