Spam review detection with Metapath-aggregated graph convolution network

被引:1
|
作者
Jayashree, P. [1 ]
Laila, K. [1 ]
Amuthan, Aara [1 ]
机构
[1] Anna Univ, Dept Comp Technol, MIT Campus, Chennai, Tamil Nadu, India
关键词
Spam review detection; feature sets derivation; machine learning; Metapath; graph convolution network; DECEPTIVE OPINION SPAM; FRAMEWORK;
D O I
10.3233/JIFS-223136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The large flux of online products in today's world makes business reviews a valuable source for consumers for making sound decisions before making online purchases. Reviews are useful for readers in learning more about the product and gauge its quality. Fake reviews and reviewers form the bulk of the review corpus, making review spamming an open research challenge. These spam reviews require detection to nullify their contribution to product recommendations. In the past, researchers and communities have taken spam detection problems as a matter of serious concern. Yet, for all that, there is space for the performance of exploration on large-scale complex datasets. The work contributes towards robust feature selection with derived features that provide more details on malicious reviews and spammers. Ensemble and other standard machine learning techniques are trained and evaluated over optimal feature sets. In addition, the Metapath-based Graph Convolution Network (M-GCN) framework is proposed, which is an implicit knowledge extraction method to automatically capture the complex semantic meaning of reviews from the heterogeneous network. It makes analysis of triplet (users, reviews, and products) relationships in e-commerce sites through examination of Top-n feature sets in a mutually reinforcing manner. The proposed model is demonstrated on Yelp and Amazon benchmark datasets for evaluation of efficacy and it is shown outperforming state-of-the-art techniques with and without graph-utilization, providing an accuracy of 96% in the prediction task.
引用
收藏
页码:3005 / 3023
页数:19
相关论文
共 50 条
  • [1] Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction
    Li, Mei
    Cai, Xiangrui
    Xu, Sihan
    Ji, Hua
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [2] An Android Malware Detection Method Based on Metapath Aggregated Graph Neural Network
    Li, Qingru
    Zhang, Yufei
    Wang, Fangwei
    Wang, Changguang
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT III, 2024, 14489 : 344 - 357
  • [3] MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding
    Fu, Xinyu
    Zhang, Jiani
    Men, Ziqiao
    King, Irwin
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2331 - 2341
  • [4] Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction
    Chen, Yali
    Lei, Xiujuan
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [5] Simple and Efficient Metapath Aggregated Network for Recommendation
    Chen, Shuai
    Li, Zhoujun
    IEEE ACCESS, 2024, 12 : 84064 - 84073
  • [6] Metapath and syntax-aware heterogeneous subgraph neural networks for spam review detection
    Zhang, Zhiqiang
    Dong, Yuhang
    Wu, Haiyan
    Song, Haiyu
    Deng, Shengchun
    Chen, Yanhong
    APPLIED SOFT COMPUTING, 2022, 128
  • [7] Spam Review Detection with Graph Convolutional Networks
    Li, Ao
    Qin, Zhou
    Liu, Runshi
    Yang, Yiqun
    Li, Dong
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2703 - 2711
  • [8] Temporal Metrics Based Aggregated Graph Convolution Network for traffic forecasting
    Chen, Fangshu
    Qi, Yanqiang
    Wang, Jiahui
    Chen, Lu
    Zhang, Yufei
    Shi, Linxiang
    NEUROCOMPUTING, 2023, 556
  • [9] Event Detection with Multi-Order Graph Convolution and Aggregated Attention
    Yan, Haoran
    Jin, Xiaolong
    Meng, Xiangbin
    Guo, Jiafeng
    Cheng, Xueqi
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 5766 - 5770
  • [10] Graph Saliency Network: Using Graph Convolution Network on Saliency Detection
    Lin, Heng-Sheng
    Ding, Jian-Jiun
    Huang, Jin-Yu
    APCCAS 2020: PROCEEDINGS OF THE 2020 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2020), 2020, : 177 - 180