On the complete weight distributions of quantum error-correcting codes

被引:0
|
作者
Du, Chao [1 ,2 ]
Ma, Zhi [1 ,2 ]
Xiong, Maosheng [3 ]
机构
[1] State Key Lab Math Engn & Adv Comp, Zhenghzhou 450001, Peoples R China
[2] Henan Key Lab Network Cryptog Technol, Zhenghzhou 450001, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
quantum codes; complete weight distributions; MacWilliams identities; BCH codes; MDS CODES; SYNCHRONIZABLE CODES; CONSTACYCLIC CODES; SUBFIELD SUBCODES; CONSTRUCTION; ENUMERATOR; DISTANCE;
D O I
10.1088/1674-1056/acac09
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a recent paper, Hu et al. defined the complete weight distributions of quantum codes and proved the MacWilliams identities, and as applications they showed how such weight distributions may be used to obtain the singleton-type and hamming-type bounds for asymmetric quantum codes. In this paper we extend their study much further and obtain several new results concerning the complete weight distributions of quantum codes and applications. In particular, we provide a new proof of the MacWilliams identities of the complete weight distributions of quantum codes. We obtain new information about the weight distributions of quantum MDS codes and the double weight distribution of asymmetric quantum MDS codes. We get new identities involving the complete weight distributions of two different quantum codes. We estimate the complete weight distributions of quantum codes under special conditions and show that quantum BCH codes by the Hermitian construction from primitive, narrow-sense BCH codes satisfy these conditions and hence these estimate applies.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On the complete weight distributions of quantum error-correcting codes
    杜超
    马智
    熊茂胜
    ChinesePhysicsB, 2023, 32 (05) : 317 - 332
  • [2] Quantum Error-Correcting Codes
    Grassl, Markus
    IT-INFORMATION TECHNOLOGY, 2006, 48 (06): : 354 - 358
  • [3] Entanglement increases the error-correcting ability of quantum error-correcting codes
    Lai, Ching-Yi
    Brun, Todd A.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [4] Quantum error-correcting codes and their geometries
    Ball, Simeon
    Centelles, Aina
    Huber, Felix
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (02): : 337 - 405
  • [5] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [6] Theory of quantum error-correcting codes
    Knill, E
    Laflamme, R
    PHYSICAL REVIEW A, 1997, 55 (02): : 900 - 911
  • [7] Breeding quantum error-correcting codes
    Dong, Ying
    Hu, Dan
    Yu, Sixia
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [8] Asymmetric quantum error-correcting codes
    Ioffe, Lev
    Mezard, Marc
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [9] Simple quantum error-correcting codes
    Steane, AM
    PHYSICAL REVIEW A, 1996, 54 (06): : 4741 - 4751
  • [10] Theory of quantum error-correcting codes
    Phys Rev A, 2 (900):