Classical Coherent States Based Quantum Information Processing and Quantum Computing Analogs

被引:0
|
作者
Djordjevic, Ivan B. [1 ]
Nafria, Vijay [1 ]
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Quantum computing; Integrated optics; Quantum entanglement; Logic gates; Photonics; Optical polarization; Optical interferometry; Polarization; Orbital calculations; Entanglement; coherent states; polarization states; orbital angular momentum (OAM) states; quantum computing; integrated optics; optical quantum computing analogs; PHOTONIC IMPLEMENTATION; PREPARATION CIRCUIT; LDPC ENCODERS; MODULATION; GATES; RELAY;
D O I
10.1109/ACCESS.2024.3370430
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It has been recently demonstrated by Bellini's group that macroscopic states, such as coherent states, can be entangled by the delocalized photon addition. Deymier's group has shown that phase bits (phi-bits) gates implemented by employing the topological acoustics (TA) principles can be used to implement the TA-based quantum computing analogs. This motivates us to revisit our previous papers where we have already described how to implement the universal quantum gates in integrated optics using optical hybrid, directional coupler, Mach-Zehnder interferometer, and periodically poled lithium niobate (PPLN) waveguides, but in a different context. In this paper, we describe how to implement the universal set of quantum gates classical analogs in integrated optics by employing classical polarization states derived from classical coherent states. The main problem for integrated optics implementation on a single photon level has been to implement the controlled-phase gate because the existing optical nonlinear devices where incapable of introducing the ${\pi }$ rad phase shift on a single photon level through the Kerr effect, which is not a problem at all when the classical polarization states are used instead. We also describe how to implement quantum qudit analogs based on orbital angular momentum (OAM) states and corresponding qudit gates. To highlight the importance of the proposed concepts, we experimentally demonstrate the controlled-phase gate analog operation between the classical coherent states.
引用
收藏
页码:33569 / 33579
页数:11
相关论文
共 50 条
  • [1] Entangled coherent states for quantum information processing
    Bukhari, Syed Hamad
    Aslam, Samia
    Mustafa, Faiza
    Jamil, Ayesha
    Khan, Salman Naeem
    Ahmad, Muhammad Ashfaq
    [J]. OPTIK, 2014, 125 (15): : 3788 - 3790
  • [2] Quantum Lego: Graph States for Quantum Computing and Information Processing
    Markham, Damian
    [J]. ERCIM NEWS, 2018, (112): : 19 - 19
  • [3] Classical and Quantum Coherent States
    Alastair Brodlie
    [J]. International Journal of Theoretical Physics, 2003, 42 : 1707 - 1731
  • [4] Classical and quantum coherent states
    Brodlie, A
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (08) : 1707 - 1731
  • [5] Classical and quantum information processing based on laser-matter coherent interaction
    Manykin, EA
    [J]. Fundamental Problems of Optoelectronics and Microelectronics II, 2005, 5851 : 163 - 166
  • [6] Ququats as superposition of coherent states and their application in quantum information processing
    Mishra, Manoj K.
    Prakash, Hari
    Jha, Vibhuti B.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2021, 19 (02)
  • [7] Macroscopic quantum information processing using spin coherent states
    Byrnes, Tim
    Rosseau, Daniel
    Khosla, Megha
    Pyrkov, Alexey
    Thomasen, Andreas
    Mukai, Tetsuya
    Koyama, Shinsuke
    Abdelrahman, Ahmed
    Ilo-Okeke, Ebubechukwu
    [J]. OPTICS COMMUNICATIONS, 2015, 337 : 102 - 109
  • [8] Quantum information processing using coherent states in cavity QED
    Yang, Ming
    Cao, Zhuo-Liang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 366 (01) : 243 - 249
  • [9] Classical capacity of quantum channels, coherent quantum information and quantum privacy
    Schjumacher, B
    Westmoreland, MD
    [J]. 1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 86 - 86
  • [10] Duality Quantum Computing and Duality Quantum Information Processing
    Gui Lu Long
    [J]. International Journal of Theoretical Physics, 2011, 50 : 1305 - 1318