Adaptive federated few-shot feature learning with prototype rectification

被引:1
|
作者
Yang, Mengping [1 ,2 ]
Chu, Xu [1 ,2 ]
Zhu, Jingwen [3 ]
Xi, Yonghui [3 ]
Niu, Saisai [3 ]
Wang, Zhe [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
[3] Shanghai Aerosp Control Technol Inst, Shanghai 201109, Peoples R China
关键词
Few-shot learning; Federated learning; Feature generation; Data augmentation;
D O I
10.1016/j.engappai.2023.107125
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Targeting to produce new features from limited data, few-shot feature generation approaches have attracted extensive attention and successfully mitigated the high cost of acquiring sufficient data. However, two main challenges remain underexplored among existing few-shot feature generation methods, namely the distribution gaps between base and novel classes, and the gradual tightening of data privacy. In order to ameliorate the performance drop induced by the distribution gap and alleviate the laborious cost of collecting massive data, in this paper, we propose a novel few-shot feature generation model that integrates domain alignment, prototype rectification, and federated learning into a unified framework. Concretely, the distance between across different classes is explicitly shrunk via domain alignment, facilitating more precise and reliable feature generation. Additionally, we develop prototype correction to reduce the intra-class discrepancy and make samples from the same class more clustered. Such that, the negative effects of the boundary samples are eliminated and thus boost the model performance. Finally, we combine our few-shot feature generation with the federated framework to protect data privacy and propose an adaptive federated scheme to provide customized services for individual clients. Extensive experiments are performed on three standard benchmark datasets to evaluate the effectiveness and superiority of our proposed method. The results consistently demonstrate that our proposed model gains substantial performance boosts and achieves state-of-the-art performance on the few-shot tasks.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Federated Few-shot Learning
    Wang, Song
    Fu, Xingbo
    Ding, Kaize
    Chen, Chen
    Chen, Huiyuan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2374 - 2385
  • [2] Adaptive Prototype Learning and Allocation for Few-Shot Segmentation
    Li, Gen
    Jampani, Varun
    Sevilla-Lara, Laura
    Sun, Deqing
    Kim, Jonghyun
    Kim, Joongkyu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8330 - 8339
  • [3] Gaussian Prototype Rectification For Few-shot Image Recognition
    Lin, Jinfu
    Shen, Junmin
    He, Xiaojian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Personalized Federated Few-Shot Learning
    Zhao, Yunfeng
    Yu, Guoxian
    Wang, Jun
    Domeniconi, Carlotta
    Guo, Maozu
    Zhang, Xiangliang
    Cui, Lizhen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2534 - 2544
  • [5] Federated Few-Shot Learning with Adversarial Learning
    Fan, Chenyou
    Huang, Jianwei
    2021 19TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2021,
  • [6] Few-shot partial multi-label learning via prototype rectification
    Yunfeng Zhao
    Guoxian Yu
    Lei Liu
    Zhongmin Yan
    Carlotta Domeniconi
    Xiayan Zhang
    Lizhen Cui
    Knowledge and Information Systems, 2023, 65 : 1851 - 1880
  • [7] Few-shot partial multi-label learning via prototype rectification
    Zhao, Yunfeng
    Yu, Guoxian
    Liu, Lei
    Yan, Zhongmin
    Domeniconi, Carlotta
    Zhang, Xiayan
    Cui, Lizhen
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (4) : 1851 - 1880
  • [8] Few-shot learning based on prototype rectification with a self-attention mechanism
    Zhao, Peng
    Wang, Liang
    Zhao, Xuyang
    Liu, Huiting
    Ji, Xia
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [9] Prototype Completion for Few-Shot Learning
    Zhang, Baoquan
    Li, Xutao
    Ye, Yunming
    Feng, Shanshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12250 - 12268
  • [10] Prototype Reinforcement for Few-Shot Learning
    Xu, Liheng
    Xie, Qian
    Jiang, Baoqing
    Zhang, Jiashuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4912 - 4916