Transabdominal ultrasound alleviates LPS-induced neuroinflammation by modulation of TLR4/NF-κB signaling and tight junction protein expression

被引:5
|
作者
Yang, Feng-Yi [1 ,2 ]
Chan, Wan-Hsuan [1 ]
Gao, Cong-Yong [1 ]
Zheng, Yin-Ting [1 ]
Ke, Chia-Hua [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Biomed Imaging & Radiol Sci, Taipei, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Sch Biomed Sci & Engn, Dept Biomed Imaging & Radiol Sci, 155 Sec 2,Li Nong St, Taipei 11221, Taiwan
关键词
Ultrasound; IBD; Colonic inflammation; Neuroinflammation; LPS; NF-KAPPA-B; BRAIN; BARRIER; PERMEABILITY; PATHOGENESIS; INFLAMMATION; ACTIVATION; MICROBIOTA; MICROGLIA; INCREASE;
D O I
10.1016/j.lfs.2023.121769
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Aim: Inflammatory bowel disease (IBD) may be a risk factor in the development of brain inflammation. It has been demonstrated noninvasive neuromodulation through sub-organ ultrasound stimulation. The purpose of this study was to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) alleviates lipopolysac-charide (LPS)-induced cortical inflammation via inhibition of colonic inflammation.Materials and methods: Colonic and cortical inflammation was induced in mice by LPS (0.75 mg/kg, i.p. injection) for 7 days, followed by application of LIPUS (0.5 and 1.0 W/cm2) to the abdominal area for 6 days. Biological samples were collected for Western blot analysis, gelatin zymography, colon length measurement, and histo-logical evaluation.Key findings: LIPUS treatment significantly attenuated LPS-induced increases in IL-6, IL-1 & beta;, COX-2, and cleaved caspase-3 expression in the colon and cortex of mice. Moreover, LIPUS significantly increased the levels of tight junction proteins in the epithelial barrier in the mouse colon and cortex with LPS-induced inflammation. Compared to the group treated only with LPS, the LIPUS-treated groups showed decreased muscle thickness and increased crypt length and colon length. Furthermore, LIPUS treatment reduced inflammation by inhibiting the LPS-induced activation of TLR4/NF-& kappa;B inflammatory signaling in the brain.Significance: We found that LIPUS alleviated LPS-induced colonic and cortical inflammation through abdominal stimulation of mice. These results suggest that abdominal LIPUS stimulation may be a novel therapeutic strategy against neuroinflammation via enhancement of tight junction protein levels and inhibition of inflammatory responses in the colon.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Low-Intensity Pulsed Ultrasound Attenuates LPS-Induced Neuroinflammation and Memory Impairment by Modulation of TLR4/NF-κB Signaling and CREB/BDNF Expression
    Chen, Tao-Tao
    Lan, Tsuo-Hung
    Yang, Feng-Yi
    CEREBRAL CORTEX, 2019, 29 (04) : 1430 - 1438
  • [2] Kojic acid reverses LPS-induced neuroinflammation and cognitive impairment by regulating the TLR4/NF-κB signaling pathway
    Ali, Waqar
    Choe, Kyonghwan
    Park, Jun Sung
    Ahmad, Riaz
    Park, Hyun Young
    Kang, Min Hwa
    Park, Tae Ju
    Kim, Myeong Ok
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [3] Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Zhang, Hua
    Wu, Zhi-min
    Yang, Ya-ping
    Shaukat, Aftab
    Yang, Jing
    Guo, Ying-fang
    Zhang, Tao
    Zhu, Xin-ying
    Qiu, Jin-xia
    Deng, Gan-zhen
    Shi, Dong-mei
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2019, 20 (10): : 816 - 827
  • [4] Hesperetin, a Citrus Flavonoid, Attenuates LPS-Induced Neuroinflammation, Apoptosis and Memory Impairments by Modulating TLR4/NF-κB Signaling
    Muhammad, Tahir
    Ikram, Muhammad
    Ullah, Rahat
    Rehman, Shafiq Ur
    Kim, Myeong Ok
    NUTRIENTS, 2019, 11 (03)
  • [5] Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway
    Haroon Badshah
    Tahir Ali
    Myeong Ok Kim
    Scientific Reports, 6
  • [6] Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway
    Badshah, Haroon
    Ali, Tahir
    Kim, Myeong Ok
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Fosinoprilat alleviates lipopolysaccharide (LPS)-induced inflammation by inhibiting TLR4/NF-κB signaling in monocytes
    Yang, Shuansuo
    Li, Ruogu
    Qu, Xinkai
    Tang, Lei
    Ge, Guanghao
    Fang, Weiyi
    Qiao, Zengyong
    Ma, Jiangwei
    Hou, Yuemei
    Liu, Huajin
    CELLULAR IMMUNOLOGY, 2013, 284 (1-2) : 182 - 186
  • [8] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua Zhang
    Zhi-min Wu
    Ya-ping Yang
    Aftab Shaukat
    Jing Yang
    Ying-fang Guo
    Tao Zhang
    Xin-ying Zhu
    Jin-xia Qiu
    Gan-zhen Deng
    Dong-mei Shi
    Journal of Zhejiang University-SCIENCE B, 2020, 21 : 341 - 341
  • [9] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua ZHANG
    Zhimin WU
    Yaping YANG
    Aftab SHAUKAT
    Jing YANG
    Yingfang GUO
    Tao ZHANG
    Xinying ZHU
    Jinxia QIU
    Ganzhen DENG
    Dongmei SHI
    Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, 21 (04) : 341
  • [10] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua ZHANG
    Zhi-min WU
    Ya-ping YANG
    Aftab SHAUKAT
    Jing YANG
    Ying-fang GUO
    Tao ZHANG
    Xin-ying ZHU
    Jin-xia QIU
    Gan-zhen DENG
    Dong-mei SHI
    Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, (04) : 341 - 341