Improved teaching-learning-based optimization algorithm with Cauchy mutation and chaotic operators

被引:6
|
作者
Bao, Yin-Yin [1 ]
Xing, Cheng [1 ]
Wang, Jie-Sheng [1 ]
Zhao, Xiao-Rui [1 ]
Zhang, Xing-Yue [1 ]
Zheng, Yue [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan, Liaoning, Peoples R China
关键词
TLBO algorithm; Function optimization; Cauchy mutation; Chaos mapping; Engineering optimization;
D O I
10.1007/s10489-023-04705-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Teaching-Learning-Based Optimization (TLBO) is a population-based intelligent optimization algorithm, which simulates the "teaching" process of teachers to students and the "learning" process of students in the class. In order to solve the problems of slow optimization speed, low optimization accuracy and easy to fall into local optimization, an improved TLBO algorithm based on Cauchy mutation and chaos operators are proposed. Firstly, the dynamic selection of teachers in the "teaching" stage leads to higher class average grades. Learning from the best students in the class during the "learning" phase makes class results more focused. Secondly, after a teaching is completed, Cauchy mutation is carried out to make the algorithm population more diverse so as to get rid of the local optimal solution. Finally, on the basis of Cauchy mutation, chaos theory is introduced into the optimization process of TLBO algorithm, and 10 chaos are embedded in the process of generating random numbers by Cauchy mutation, which enhances its ergo city and irreconcilability to further improve its convergence speed and accuracy. The performance of the proposed improved TLBO algorithm was tested by using 30 benchmark functions in CEC-BC-2017, and finally two engineering design problems (cantilever arm design and pressure vessel design) were optimized. The experimental results show that the proposed TLBO algorithm has significantly improved its convergence speed and optimization accuracy.
引用
收藏
页码:21362 / 21389
页数:28
相关论文
共 50 条
  • [1] Improved teaching–learning-based optimization algorithm with Cauchy mutation and chaotic operators
    Yin-Yin Bao
    Cheng Xing
    Jie-Sheng Wang
    Xiao-Rui Zhao
    Xing-Yue Zhang
    Yue Zheng
    Applied Intelligence, 2023, 53 : 21362 - 21389
  • [2] Improved teaching-learning-based optimization algorithm based on fusion difference mutation
    Liang, Shaohui
    Wei, Botao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4643 - 4651
  • [3] Improved Teaching-Learning-Based Optimization Algorithm
    Zhai, Junchang
    Qin, Yuping
    Zhao, Zhen
    Yao, Minghai
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 3112 - 3116
  • [4] An improved teaching-learning-based optimization algorithm for Function Optimization
    Liu, Jing
    Lyu, Dalong
    Li, Yiying
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4492 - 4496
  • [5] Constrained optimization based on improved teaching-learning-based optimization algorithm
    Yu, Kunjie
    Wang, Xin
    Wang, Zhenlei
    INFORMATION SCIENCES, 2016, 352 : 61 - 78
  • [6] An improved teaching-learning-based optimization
    Hou, Jie
    Ren, Ziwu
    Lu, Pan
    Zhang, Kunting
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 3128 - 3132
  • [7] An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems
    Yu, Kunjie
    Wang, Xin
    Wang, Zhenlei
    JOURNAL OF INTELLIGENT MANUFACTURING, 2016, 27 (04) : 831 - 843
  • [8] An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems
    Kunjie Yu
    Xin Wang
    Zhenlei Wang
    Journal of Intelligent Manufacturing, 2016, 27 : 831 - 843
  • [9] An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems
    Rao, R. Venkata
    Patel, Vivek
    SCIENTIA IRANICA, 2013, 20 (03) : 710 - 720
  • [10] An improved teaching-learning-based optimization algorithm for solving global optimization problem
    Chen, Debao
    Zou, Feng
    Li, Zheng
    Wang, Jiangtao
    Li, Suwen
    INFORMATION SCIENCES, 2015, 297 : 171 - 190